
Toward less synchronous composable multilevel
methods for implicit multiphysics simulation

Jed Brown1, Mark Adams2, Peter Brune1, Matt Knepley3, Dave
May4, Barry Smith1

1Mathematics and Computer Science Division, Argonne National Laboratory
2Columbia University

3Computation Institute, University of Chicago
4ETH Zürich

2012-02-06



Outline

Multiphysics and methods

Coupling software in PETSc

Hardware and consequences



Multiphysics problems
Examples

� Saddle-point problems (e.g. incompressibility, contact)
� Stiff waves (e.g. low-Mach combustion)
� Mixed type (e.g. radiation hydrodynamics, ALE free-surface flows)
� Multi-domain problems (e.g. fluid-structure interaction)
� Full space PDE-constrained optimization

Software/algorithmic considerations

� Separate groups develop different “physics” components
� Do not know a priori which methods will have good algorithmic

properties
� Achieving high throughput is more complicated
� Multiple time and/or spatial scales

� Splitting methods are delicate, often not in asymptotic regime
� Strongest nonlinearities usually non-stiff: prefer explicit for TVD

limiters/shocks



The Great Solver Schism: Monolithic or Split?

Monolithic

� Direct solvers
� Coupled Schwarz
� Coupled Neumann-Neumann

(need unassembled matrices)
� Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

� Physics-split Schwarz
(based on relaxation)

� Physics-split Schur
(based on factorization)

� approximate commutators
SIMPLE, PCD, LSC

� segregated smoothers
� Augmented Lagrangian
� “parabolization” for stiff

waves

X Need to understand global
coupling strengths

� Preferred data structures depend on which method is used.
� Interplay with geometric multigrid.



Splitting for Multiphysics
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� Gauss-Seidel inspired, works when fields are loosely coupled
� Factorization: -pc_fieldsplit_type schur

�
A B

S

�−1� 1
CA−1 1

�−1

, S = D−CA−1B

� robust (exact factorization), can often drop lower block
� how to precondition S which is usually dense?

� interpret as differential operators, use approximate commutators



How much nesting?

P1 =




Juu Jup JuE
0 Bpp 0
0 0 JEE





� Bpp is a mass matrix in the
pressure space weighted by
inverse of kinematic viscosity.

� Elman, Mihajlović, Wathen,
JCP 2011 for non-dimensional
isoviscous Boussinesq.

� Works well for
non-dimensional problems on
the cube, not for realistic
parameters.
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� Inexact inner solve using
upper-triangular with Bpp for
Schur.

� Another level of nesting.
� GCR tolerant of inexact inner

solves.
� Outer converges in 1 or 2

iterations.

� Low-order preconditioning full-accuracy unassembled high order
operator.

� Build these on command line with PETSc PCFieldSplit.



Example 3×3 problem with nested 2×2 split
-fieldsplit_s_ksp_type gcr
-fieldsplit_s_ksp_rtol 1e-1
-fieldsplit_s_ksp_monitor_vht
-fieldsplit_s_ksp_monitor_singular_value
-fieldsplit_s_pc_type fieldsplit
-fieldsplit_s_pc_fieldsplit_type schur
-fieldsplit_s_pc_fieldsplit_real_diagonal
-fieldsplit_s_pc_fieldsplit_schur_factorization_type lower
-fieldsplit_s_fieldsplit_u_ksp_type gmres
-fieldsplit_s_fieldsplit_u_ksp_max_it 10
-fieldsplit_s_fieldsplit_u_pc_type asm
-fieldsplit_s_fieldsplit_u_sub_pc_type ilu
-fieldsplit_s_fieldsplit_u_sub_pc_factor_levels 1
-fieldsplit_s_fieldsplit_u_ksp_converged_reason
-fieldsplit_s_fieldsplit_p_ksp_type preonly
-fieldsplit_s_fieldsplit_p_ksp_max_it 1
-fieldsplit_s_fieldsplit_p_pc_type jacobi
-fieldsplit_e_ksp_type gmres
-fieldsplit_e_ksp_converged_reason
-fieldsplit_e_pc_type asm
-fieldsplit_e_sub_pc_type ilu
-fieldsplit_e_sub_pc_factor_levels 2



Monolithic approaches

Parallel direct solver
-dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps

Coupled nonlinear multigrid accelerated by NGMRES with
multi-stage smoothers

-lidvelocity 200 -grashof 1e4
-snes_grid_sequence 5 -snes_monitor -snes_view
-snes_type ngmres
-npc_snes_type fas
-npc_snes_max_it 1
-npc_fas_coarse_snes_type ls
-npc_fas_coarse_ksp_type preonly
-npc_fas_snes_type ms
-npc_fas_snes_max_it 1
-npc_fas_ksp_type preonly
-npc_fas_pc_type pbjacobi
-npc_fas_snes_ms_type m62
-npc_fas_snes_max_it 1
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Multi-physics coupling in PETSc

Momentum Pressure

� package each “physics”
independently

� solve single-physics and
coupled problems

� semi-implicit and fully implicit
� reuse residual and Jacobian

evaluation unmodified
� direct solvers, fieldsplit inside

multigrid, multigrid inside
fieldsplit without recompilation

� use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

� matrix-free anywhere
� multiple levels of nesting



Multi-physics coupling in PETSc
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� multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

� package each “physics”
independently

� solve single-physics and
coupled problems

� semi-implicit and fully implicit
� reuse residual and Jacobian

evaluation unmodified
� direct solvers, fieldsplit inside

multigrid, multigrid inside
fieldsplit without recompilation

� use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

� matrix-free anywhere
� multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes
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Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

� package each “physics”
independently

� solve single-physics and
coupled problems

� semi-implicit and fully implicit
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� direct solvers, fieldsplit inside

multigrid, multigrid inside
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format for each physics
(e.g. symmetric block size 3)

� matrix-free anywhere
� multiple levels of nesting



Work in Split Local space, matrix data structures reside in any space.



MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);
� Primarily for assembly

� B is not guaranteed to implement MatMult
� The communicator for B is not specified,

only safe to use non-collective ops (unless you check)

� IS represents an index set, includes a block size and
communicator

� MatSetValuesBlockedLocal() is implemented
� MatNest returns nested submatrix, no-copy
� No-copy for Neumann-Neumann formats

(unassembled across procs, e.g. BDDC, FETI-DP)
� Most other matrices return a lightweight proxy Mat

� COMM_SELF

� Values not copied, does not implement MatMult
� Translates indices to the language of the parent matrix
� Multiple levels of nesting are flattened



Text
May, Le Pourhiet & Brown: Coupled Geodynamics

Stokes + Implicit Free Surface

16

“Drunken seaman”, Rayleigh 
Taylor instability test case from  
Kaus et al., 2010. Dense, viscous 
material (yellow) overlying less 
dense, less viscous material 
(blue).

Momentum

Pressure“S
to
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Coordinates

COORDINATE RESIDUALS

JACOBIAN

NESTED PRECONDITIONER

Reuse stokes 
operators and 
saddle point 

preconditioners

[We use a full Lagrangian update of our mesh, with no remeshing]
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Stokes + Implicit Free Surface

* Picard fails to converge for 
large time steps sizes.

* Newton is robust for a wide 
range of time step sizes.

[nonlinear residual stagnates!]

[nonlinear residual stagnates!]

17Sunday, December 4, 2011



Text
May, Le Pourhiet & Brown: Coupled Geodynamics

Stokes + Implicit Free Surface
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* The nonlinear residual ALWAYS 
increases from one step to the next.

* A nonlinear solve is required to 
control the error.

* An accurate nonlinear solve on the 
first time step, combined with 1 or 2 
nonlinear iterations on subsequent 
steps still results in severe errors.         
This is true even when dt is small.

18Sunday, December 4, 2011
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On-node hardware roadmap

Hardware trends

� More cores (keep hearing O(1000) per node)
� Long vector registers (32B for AVX and BG/Q, 64B for MIC)
� Must use SMT to hide memory latency (POWER7)
� Must use SMT for floating point performance (GPU, BG/Q)
� Large penalty for non-contiguous memory access

“Free flops”, but how can we use them?

� High order methods good: better accuracy per storage
� High order methods bad: work unit gets larger
� GPU threads have very little memory, must keep work unit small
� Need library composability, keep user contribution

embarrassingly parallel



How to program this beast?

� Decouple physics from discretization
� Expose small, embarrassingly parallel operations to user
� Library schedules user threads for reuse between kernels
� User provides physics in kernels run at each quadrature point
� Continuous weak form: find u ∈ VD

vTF(u)∼
�

Ω
v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

� Similar form at faces, may involve Riemann solve
� Library manages reductions

� Interpolation and differentiation on elements
� Exploit tensor product structure to keep working set small
� Assembly into solution/residual vector (sum over elements)



Nodal hp-version finite element methods

1D reference element

� Lagrange interpolants on
Legendre-Gauss-Lobatto points

� Quadrature R̂, weights Ŵ
� Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ ⊗ Ŵ ⊗ Ŵ
B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂
D̂1 = B̂⊗ D̂⊗ B̂
D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s



Nodal hp-version finite element methods

1D reference element

� Lagrange interpolants on
Legendre-Gauss-Lobatto points

� Quadrature R̂, weights Ŵ
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Operations on physical elements

Mapping to physical space

xe : K̂ → Ke, Je
ij = ∂xe

i /∂ x̂j, (Je)−1 = ∂ x̂/∂xe

Element operations in physical space

Be = B̂ We = ŴΛ(|Je(r)|)

De
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Representation of Jacobians, Automation
� For unassembled representations, decomposition, and assembly
� Continuous weak form: find u

vTF(u)∼
�

Ω
v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

� Weak form of the Jacobian J(u): find w

vTJ(u)w ∼
�
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�
vT ∇vT�

�
f0,0 f0,1
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� Terms in [fi,j] easy to compute symbolically, AD more scalable.
� Nonlinear terms f0, f1 usually have the most expensive nonlinearities

in the computation of scalar material parameters
� Equations of state, effective viscosity, “star” region in Riemann solve
� Compute gradient with reverse-mode, store at quadrature points.
� Perturb scalars, then use forward-mode to complete the Jacobian.
� Flip for action of the adjoint.



Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E:

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0
ρt +∇·ρu = 0

Et +∇·
�
(E+p)u− kT∇T − kω∇ω

�
−ηDui :Dui −ρu ·g = 0

� Solve for density ρ , ice velocity ui, temperature T , and melt
fraction ω using constitutive relations.

� Simplified constitutive relations can be solved explicitly.
� Temperature, moisture, and strain-rate dependent rheology η .
� High order FEM, typically Q3 momentum & energy

� DAEs solved implicitly after semidiscretizing in space.
� Preconditioning using nested fieldsplit



Performance of assembled versus unassembled
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tensor b = 1
tensor b = 3
tensor b = 5
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assembled b = 3
assembled b = 5

� High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

� Choose approximation order at run-time, independent for each field
� Precondition high order using assembled lowest order method
� Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Memory Bandwidth

Operation Arithmetic Intensity (flops per byte)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

Sandy Bridge 6-core 21* 150 7.2
Magny Cours 16-core 42* 281 6.7
Blue Gene/Q node 43 205 4.8
GeForce 9400M 21 54 2.6
GTX 285 159 1062 6.8
Tesla M2050 144 1030 7.1



Prospects for reducing synchronization

� Dot products and norms
� orthogonality is a powerful concept
� dot product/norm fusion in CG variants
� latency-tolerant Krylov methods, TSQR for GMRES
� nonlinear methods (e.g. NGMRES, BFGS, line searches)
� hierarchical methods to limit system-wide norms
� setting up smoothers and coarsening rates for AMG

� additive coarse grids
� subphysics on subcommunicators, even within multigrid context
� s-step methods (and other fusion)

� often spoiled by algorithmic requirements of preconditioning
� relevant for multigrid smoothers
� difficult crossovers for 3D problems



Multigrid is always strong scaling

� Finest level is chosen by the application (might have big
subdomains)

� All coarsened levels choose communicator size based on strong
scaling limit

� Optimizing the strong scaling limit pays off consistently
� Rapid coarsening is important (2:1 semi-coarsening not okay any

more)



Advanced Analysis

� Uncertainty quantification
� intrusive vs unintrusive methods, multilevel
� uncertainty in modeling error
� use subdifferentials for non-smooth processes
� unified handling of heterogeneous observational data

� PDE-constrained optimization
� multi-objective
� robustness
� rich problem description
� fusing algorithmic steps (LNK and coupled DD fuse gradients with

progress)
� Exploring stability manifolds

� solving bordered linear and nonlinear systems
� nearly time-periodic nonlinear problems

� identifying cycles in ocean models, turbomachinery



Software challenges

� Which interfaces do users have to interact with?
� “F”ramework vs library
� Extensibility is critical for multiphysics

� Asynchronous interfaces crossing module boundaries
� How to ensure progress?

� Merge communication on multiple levels or between multiple
physics

� Fusing coarse level operations
� Working with non-nested communicators is tricky
� Current solutions for hierarchical memory are bad for libraries

� I want a communicator-like object
� I want a way to allocate memory explicitly/relative to algorithmic

dependencies instead of implicit “first touch”
� Time integration: IMEX, multirate, parallel in time

� method of lines: g(u̇,u, t) = f (u, t)
� Lax-Wendroff time integration is harder for composable software
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