
[HPC]3, 8 February 2012

Implications of Emerging Architectures on Hyperbolic Solvers
Hyperbolic PDEs are at the heart of critical energy and environmental applications,
so we seek to improve the utility of their simulation in pursuit of scientific
prediction and engineering design by improving (1) the fidelity of the models, (2)
the quantified accuracy of the results, (3) the efficiency of the computations, and
(4) the productivity of the users. The first two objectives push us into extreme
computing environments, where the latter two objectives become increasingly
daunting. Much mathematics and software appears to be missing if the hardware is
to be used at its potential. Drawing upon three recent workshops on exascale
hardware, multiphysics applications, and synchronization-reducing algorithms, as
well as the second conclave of [HPC]^3, we point out ways in which the
hyperbolic solvers community will need to adapt to emerging architectures and
some means of adaptation.

[HPC]3, 8 February 2012

Implications of
Emerging Architectures

on Hyperbolic Solvers

David Keyes

Dean, Division of Mathematical and Computer Sciences and Engineering,
King Abdullah University of Science and Technology

[HPC]3, 8 February 2012

n  The scientific
computing world is
at a crossroads with
respect to the push
towards extreme
scale

Remembering Von Neumann
Born 28 Dec 1903 in Budapest, Hungary

Died 8 Feb 1957 in Washington D.C., USA

[HPC]3, 8 February 2012

Remembering Von Neumann:
June 1945

The logical control of the device, that is the proper
sequencing of its operations can be most efficiently
carried out by a central control organ. If the device is to
be elastic, that is as nearly as possible all purpose, then a
distinction must be made between the specific
instructions given for and defining a particular problem,
and the general control organs which see to it that these
instructions are carried out…
Any device which is to carry out long and complicated
sequences of operations (specifically of calculations)
must have a considerable memory…
For partial differential equations the initial conditions
and the boundary conditions may constitute an extensive
numerical material, which must be remembered
throughout a given problem…
For partial differential equations of the hyperbolic or
parabolic type, integrated along a variable t, the
(intermediate) results belonging to the cycle t must be
remembered for the calculation of the cycle t +dt.

[HPC]3, 8 February 2012

Remembering Von Neumann:
October 1947

[HPC]3, 8 February 2012

Remembering Von Neumann:
November 1950

[HPC]3, 8 February 2012

n  20 papers in physics
!  quantum mechanics, ergodic theory, fluid mechanics,

geophysics

n  60 papers in pure mathematics
!  set theory, geometry, game theory

n  60 papers in applied and computational mathematics
!  functional analysis, numerical analysis, linear

programming, statistics

n Other
!  computer science, economics, politics

Von Neumann’s corpus

[HPC]3, 8 February 2012

n One of the first commissioners of the U.S.
Atomic Energy Commission
!  today, called the Department of Energy
!  principal in the “Manhattan Project” at Los Alamos
!  developed the plutonium trigger for the uranium bomb
!  developed theories of nuclear proliferation and

“mutually assured destruction”
!  developed plans for intercontinental ballistic missiles

(ICBMs) and submarine launched missiles

n  Consulted for
!  U.S. Army, CIA, RAND Corporation, Standard Oil

(today Exxon-Mobile), GE, IBM

Von Neumann’s service
JvN’s Los Alamos badge photo

[HPC]3, 8 February 2012

n  “All stable processes we shall predict. All unstable processes we
shall control.”

n  “There is a time lapse between a mathematical discovery and the
moment it becomes useful; […] the whole system seems to
function without any direction, without any reference to
usefulness, and without any desire to do things which are useful.”

n  “In mathematics you don't understand things. You just get used
to them.”

Quotations from Von Neumann

[HPC]3, 8 February 2012

Quotations from Von Neumann
n  “The sciences do not try to explain, they hardly even try to

interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and
precisely that it is expected to work.”

n  “It would appear that we have reached the limits of what it is
possible to achieve with computer technology, although one
should be careful with such statements, as they tend to sound
pretty silly in 5 years.”

[HPC]3, 8 February 2012

David:
Algorithms

Architectures

Randy:
Analysis

Applications

Ridg:
Languages
Software

Workshop Context

Hans Petter:
Languages
Frameworks

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 For background, see the archives at
www.exascale.org

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

[HPC]3, 8 February 2012

Contexts
n  The scientific computing world is at a crossroads with

respect to the push towards extreme scale
n  Proceeded steadily for three decades from mega- (1970s) to

giga- (1988) to tera- (1998) to peta- (2008)
!  exa- is qualitatively different and will be much harder

n  Software and numerics represented at this meeting will
ultimately confront exascale to maintain sponsor relevance
!  though obviously, there are many fruitful directions in

mathematics and software in the modeling of hyperbolic
equations are architecture-neutral

[HPC]3, 8 February 2012

Overlap of interests: IESP and HPC3
n Exascale’s extremes change the game

!  mathematicians are now on the front line
"  without contributions in the form of new mathematics (including

statistics), the passage to the exascale will yield little fruit

!  mathematical scientists will find the computational power
to do things many have wanted
"  room for creativity in “post-forward” problems
"  mathematical scientists will participate in cross-disciplinary

integration – “third paradigm” and “fourth paradigm”
"  remember that exascale at the lab means petascale on the desk

n Let’s mention some mathematical opportunities,
after quickly reviewing the hardware challenges

[HPC]3, 8 February 2012

Why exa- is different

(Intel Sandy Bridge, 2.27B transistors)

c/o T. Schulthess (ETHZ); c/o P. Kogge (ND) et al. DARPA study

Going across the die requires up to an order of magnitude
more !
DARPA study predicts that by 2019:
!  Double precision FMADD flop: 11pJ
!  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

Which steps of FMADD take more energy?

input
input

input

output

four

[HPC]3, 8 February 2012

Why exa- is different, cont.

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Eventually processing will be
limited by transmission

Robert Dennard, IBM
(inventor of DRAM, 1966)

[HPC]3, 8 February 2012

“A pJ wasted on moving data is
not only a pJ that is not
available for communication,
but also a pJ that must often be
matched by other pJs that must
be expended to monitor the
progress of the data during the
movement, to correct for any
errors, and to manage the
suspension and reawakening of
any circuits that source or sink
the data.”
P. Kogge, et al. (2008), p. 244

Parsimony in communication

[HPC]3, 8 February 2012

•  The 2011 Gordon Bell peak prize won
by Yukihiro Hasegawa et al. of RIKEN
at more than 3 Pflop/s sustained

–  First-principles calculation of electronic
states of a silicon nanowire with 100,000
atoms on the “Kei computer”

–  taking industry leading 22 nm device size
in 2011 down to 10 nm

–  10 nm not expected for CMOS transistors
until 2015

–  bootstrapping the next generation of
semiconductors!

Bootstrapping to exa- with nano- on peta-

[HPC]3, 8 February 2012

What will first “general purpose” exaflop/s
machines look like?

n  Hardware: many potentially exciting paths beyond today’s
CMOS silicon-etched logic, but not commercially at scale
within the decade

n  Software: many ideas for general-purpose and domain-
specific programming models beyond “MPI + X”, but not
penetrating the main CS&E workforce within the decade

[HPC]3, 8 February 2012

Prototype exascale hardware:
a heterogeneous, distributed memory
GigaHz KiloCore MegaNode system

c/o P. Beckman (ANL)

~3

[HPC]3, 8 February 2012

Some exascale themes (see reports)

#  Clock rates cease to increase while arithmetic capacity
continues to increase dramatically w/concurrency
consistent with Moore’s Law

#  Storage capacity diverges exponentially below
arithmetic capacity

#  Transmission capacity diverges exponentially below
arithmetic capacity

#  Mean time between hardware interrupts shortens
#  Billions of dollars of scientific software hang in the

balance until better algorithms arrive to span the
architectural gap

[HPC]3, 8 February 2012

Hurdle #1: power requires slower clocks
and greater concurrency

c/o SciDAC Review 16, February 2010

[HPC]3, 8 February 2012

Hurdle #2: memory bandwidth could eat

up the entire power budget

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y

Po
w

er
 C

on
su

m
pt

io
n

in
 M

eg
aw

at
ts

 (M
W

)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)

Feasible Power Envelope (20MW)

c/o John Shalf (LBNL)

Rule of prefixes "
“Pico times Exa is Mega”

Example:
“PicoJ times Exa/s is MegaW”

20 MW is power consumption of a town
of 14,000 people in an OECD country

[HPC]3, 8 February 2012

Hurdle #3: memory capacity could eat
up the entire fiscal budget

$0.00

$100.00

$200.00

$300.00

$400.00

$500.00

$600.00

16 32 64 128 256

C
os

t i
n

M
ill

io
ns

 o
f D

ol
la

rs

Petabytes of Memory

Cost in $M (8 gigabit modules)

Cost in $M (16 Gigabit modules)

1/2 of $200M system

c/o John Shalf (LBNL)

[HPC]3, 8 February 2012

Implications of operating on the edge
n  Draconian reduction required in power per flop and per

byte will make computing and copying data less reliable
!  voltage difference between “0” and “1” will be reduced
!  circuit elements will be smaller and subject to greater

physical noise per signal
!  there will be more errors that must be caught and corrected

n  Power may have to be cycled off and on or clocks slowed
and speeded based on compute schedules and based on
cooling capacity
!  makes per node performance rate unreliable
!  “Race-to-Halt” (RTH) is proposed as an alternative to power

cycling, due to persistent leakage currents (budget similar to
human brain basal energy), but thermal protection may
overrule

[HPC]3, 8 February 2012

Implications of operating on the edge
n  Expanding the number of nodes (processor-memory units)

beyond 106 would not a serious threat to algorithms that lend
themselves to well-amortized precise load balancing
!  provided that the nodes are performance reliable

n  A real challenge is expanding the number of cores on a node
to 103

!  must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

n  It is already about 103 slower to to retrieve an operand from
main DRAM memory than to perform an arithmetic
operation – will get worse by a factor of ten
!  almost all operands must come from registers or upper cache

[HPC]3, 8 February 2012

Why push to extreme scale?
(DOE CSGF application essay question #3)
n  Better resolve model’s full, natural range of length or time scales
n  Accommodate physical effects with greater fidelity
n  Allow the model degrees of freedom in all relevant dimensions
n  Better isolate artificial boundary conditions (e.g., in PDEs) or better

approach realistic levels of dilution (e.g., in MD)
n  Combine multiple complex models
n  Solve an inverse problem, or perform data assimilation
n  Perform optimization or control
n  Quantify uncertainty
n  Improve statistical estimates

n  Operate without models (machine learning)

“Third paradigm”

“Fourth paradigm”

[HPC]3, 8 February 2012

“Missing” mathematics
n New formulations with

!  greater arithmetic intensity (flops per bytes moved
into and out of registers and upper cache)

!  reduced communication
!  reduced synchronization
!  assured accuracy with (adaptively) less floating-

point precision
n Quantification of trades between limiting resources
n Plus all of the exciting analytical agendas that

exascale is meant to exploit

[HPC]3, 8 February 2012

Arithmetic intensity illustration

Roofline model of
numerical kernels on
an NVIDIA C2050
GPU (Fermi). The
‘SFU’ label is used
to indicate the use of
special function
units and ‘FMA’
indicates the use of
fused multiply-add
instructions.

(The order of fast
multipole method
expansions was set
to p = 15.)

c/o L. Barba (BU); cf. “Roofline Model” of S. Williams (Berkeley)

[HPC]3, 8 February 2012

Miracles “need not apply”

n We should not expect to escape causal dependencies
!  if the input-to-output map of a problem description has

nonlocal data dependencies, and if we need the solution
accurately everywhere, we will have nonlocal
communication

n But we should ask fundamental questions:
!  for the science of interest, do we need to evaluate the

output everywhere?
"  note that FEniCS allows users to specify this

!  is there another formulation that can produce the same
required scientific observables in less time and energy?

[HPC]3, 8 February 2012

How are most workhorse simulations
implemented at the infra-petascale today?

n Explicit methods or iterative iterative methods based
on stencil-op/SpMV with data decomposition and
message-passing
!  each individual processor works on a portion of the original

problem and exchanges information at its boundaries with other
processors that own portions with which it interacts causally, to
evolve in time or to establish equilibrium

!  computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is SPMD/BSP/CSP
!  Single Program, Multiple Data
!  Bulk Synchronous Programming
!  Communicating Sequential Processes

[HPC]3, 8 February 2012

Estimating scalability
 n  Given complexity estimates of the leading terms of:

!  the concurrent computation (per iteration phase)
!  the concurrent communication
!  the synchronization frequency

n  And a model of the architecture including:
!  internode communication (network topology and protocol reflecting

horizontal memory structure)
!  on-node computation (effective performance parameters including

vertical memory structure)

n  One can estimate optimal concurrency and optimal
execution time
!  on per-iteration basis
!  simply differentiate time estimate in terms of problem size N and

processor number P with respect to P

[HPC]3, 8 February 2012

3D stencil computation weak scaling
(assume fast local network, tree-based global reductions)

n  Total wall-clock time per iteration (ignoring local comm.)

n  For optimal P, , or

 or

n  P can grow linearly with N, and running time increases

“only” logarithmically – as good as weak scaling can be!
n  Problems: (1) assumes perfect synchronization,
 (2) log of a billion may be “large”

T (N,P) = A N
P
+C logP

!T
!P

= 0 !A N
P2

+
C
P
= 0

Popt =
A
C
N NB: ratio of local to global

communication must be studied
before accepting this asymptotic
estimate that neglects local;
wide halos are increasingly
common

[HPC]3, 8 February 2012

SPMD parallelism w/ domain decomposition:
an endangered species?

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

!1

!2

!3

A23 A21 A22
rows assigned

to proc “2”

[HPC]3, 8 February 2012

Workhorse innards: e.g., Krylov-Schwarz,
a bulk synchronous implicit solver

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

Idle time due to load imbalance becomes a
challenge at, say, one billion threads, when
one thread can hold up all of the rest at a
synchronization point

P1:

P2:

Pn:
!

communication imbalance computation imbalance

[HPC]3, 8 February 2012

Our programming idiom is nested loops, e.g.,
for Newton-Krylov-Schwarz

 for (k = 0; k < n_Newton; k++) {
 compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) {
 forall (i = 0; i < n_Precon ; i++) {

 solve subdomain problems concurrently
 } // End of loop over subdomains
 perform Jacobian-vector product
 enforce Krylov basis conditions
 update optimal coefficients
 check linear convergence
 } // End of linear solver
 perform DAXPY update
 check nonlinear convergence
 } // End of nonlinear loop

Newton
loop

Krylov
loop

concurrent
preconditioner

loop

Outer loops (not shown): continuation, implicit timestepping, optimization

[HPC]3, 8 February 2012

These loops, with their artifactual orderings,
need to be replaced with DAGs

#  Diagram shows a dataflow
ordering of the steps of a 4!4
symmetric generalized
eigensolver

#  Nodes are tasks, color-coded
by three types, and edges are
data dependencies

#  Original algorithm
completed each task before
starting the next (subroutine
boundaries) and each task
took longer (overconstrained
by loop-based operation
order)

c/o H. Ltaief (KAUST)

T
I
M
E

[HPC]3, 8 February 2012

Multiphysics w/ legacy codes:
an endangered species?

n  Many multiphysics codes operate like this, where the models may
occupy the same domain in the bulk (e.g., reactive transport) or
communicate at interfaces (e.g., ocean-atmosphere)*

n  The data transfer cost represented by the blue and green arrows
may be much higher than the computation cost of the models,
even apart from first-order operator splitting error and possible
instability

Model 1

Model 2
(subcycled)

*see ANL MCS-TM 321 from DOE ICiS workshop (Keyes, et al., 2011)

[HPC]3, 8 February 2012

Many research frontiers have the algebraic
and software structure of multiphysics

#  Exascale is motivated by these:
#  uncertainty quantification, inverse problems,

optimization, immersive visualization and steering

#  These may carry auxiliary data structures to/from
which blackbox model data is passed and they act
like just another “physics” to the hardware
#  pdfs, Lagrange multipliers, etc.

#  Today’s separately designed blackbox algorithms
for these may not live well on exascale hardware: co-
design may be required to reduce data motion

[HPC]3, 8 February 2012

Multiphysics layouts must invade blackboxes

ocean
atm

ice

c/o W. D. Gropp (UIUC)

n  Each application must
first be ported to
extreme scale
(distributed, hierarchical
memory)

n  Then applications may
need to be interlaced at
the data structure level
to minimize copying and
allow work stealing at
synchronization points

[HPC]3, 8 February 2012

Bad news/good news (1)
#  Users will have to control data motion

#  carries the highest energy cost in the exascale
computational environment

#  Users will finally get the privilege of
controlling the vertical data motion
#  horizontal data motion under control of users under Pax

MPI, already
#  but vertical replication into caches and registers was

(until now with GPUs) scheduled and laid out by
hardware and runtime systems, mostly invisibly to users

[HPC]3, 8 February 2012

Bad news/good news (2)
#  “Optimal” formulations and algorithms may lead

to poorly proportioned computations for exascale
hardware resource balances
#  today’s “optimal” methods presume flops are expensive and

memory and memory bandwidth are cheap

#  Architecture may lure users into more
arithmetically intensive formulations (e.g., fast
multipole, lattice Boltzmann, rather than mainly
PDEs)
#  tomorrow’s optimal methods will (by definition) evolve to

conserve what is expensive

[HPC]3, 8 February 2012

Bad news/good news (3)
#  Hardware nonuniformity may force

abandonment of the Bulk Synchronous
Programming (BSP) paradigm
#  it will be impossible for the user to control load

balance sufficiently to make it work

#  Hardware and algorithmic nonuniformity will
be indistinguishable at the performance level
#  good solutions for the dynamically load balancing in

systems space will apply to user space, freeing users

[HPC]3, 8 February 2012

Bad news/good news (4)
#  Default use of high precision may come to an end,

as wasteful of storage and bandwidth
#  we will have to compute and communicate “deltas” between

states rather than the full state quantities, as we did when double
precision was expensive (e.g., iterative correction in linear
algebra)

#  a combining network node will have to remember not just the last
address, but also the last values, and send just the deltas

#  Equidistributing errors properly while
minimizing resource use will lead to innovative
error analyses in numerical analysis

[HPC]3, 8 February 2012

Bad news/good news (5)
#  Fully deterministic algorithms may simply come

to be regarded as too synchronization-vulnerable
#  Rather than wait for data, we may need to infer it and move on

#  A rich numerical analysis of algorithms that
make use of statistically inferred “missing”
quantities may emerge
#  Machine learning, sensitivity analysis, estimates from

approximate Green’s functions are among the techniques that
will be called up to analyze or minimize the numerical perils of
operating without delayed data

[HPC]3, 8 February 2012

Philosophy of an algorithmicist
n  Applications are given (as function of time)
n  Architectures are given (as function of time)
n  Algorithms and software must be adapted or created to bridge

to hostile architectures for the sake of the complex applications
!  as important as ever today, with transformation of Moore’s Law

from speed-based to concurrency-based, due to power considerations
!  scalability still important, but new memory-bandwidth stresses arise

when on-chip memories are shared
!  greatest challenge is lack of performance robustness of individual

cores, which can spoil load balance
n  Knowledge of algorithmic capabilities can usefully influence

!  the way applications are formulated
!  the way architectures are constructed

n  Knowledge of application and architectural opportunities can
usefully influence algorithmic development

[HPC]3, 8 February 2012

How will PDE computations adapt?
n  Programming model will still be message-passing on the

outside (due to large legacy code base), adapted to
multicore processors beneath a relaxed synchronization
MPI-like interface

n  Load-balanced blocks, scheduled today with nested loop
structures will be separated into critical and non-critical
parts

n  Critical parts will be scheduled with directed acyclic
graphs (DAGs)

n  Noncritical parts will be made available for work-stealing
in economically sized chunks

[HPC]3, 8 February 2012

Adaptation to
asynchronous programming styles

n  To take full advantage of such asynchronous algorithms, we
need to develop greater expressiveness in scientific
programming
!  create separate threads for logically separate tasks, whose priority is

a function of algorithmic state, not unlike the way a time-sharing OS
works

!  join priority threads in a directed acyclic graph (DAG), a task graph
showing the flow of input dependencies; fill idleness with noncritical
work or steal work

n  Steps in this direction
!  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne),

2009]
!  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]

[HPC]3, 8 February 2012

n  Can write code in styles that do not require artifactual
synchronization

n  Critical path of a nonlinear implicit PDE solve is essentially
! lin_solve, bound_step, update; lin_solve, bound_step, update !

n  However, we often insert into this path things that could be done
less synchronously, because we have limited language
expressiveness
!  Jacobian and preconditioner refresh
!  convergence testing
!  algorithmic parameter adaptation
!  I/O, compression
!  visualization, data mining

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

[HPC]3, 8 February 2012

Some major challenges that stay the same
in peta to exa

n  Poor scaling of collectives due to internode latency
n  Poor performance of SpMV due to shared intranode

bandwidth
n  Poor scaling of coarse grids due to insufficient concurrency
n  Lack of reproducibility due to floating point

noncommutativity and algorithmic adaptivity (including
autotuning) in efficient production mode

n  Difficulty of understanding and controlling vertical
memory transfers

[HPC]3, 8 February 2012

Sources of nonuniformity
n  System

!  manufacturing, OS jitter, TLB/cache performance variations,
network contention, dynamic power management, soft errors, hard
component failures, software-mediated resiliency, etc.

n  Algorithmic
!  physics at gridcell/particle scale (e.g., table lookup, equation of

state, external forcing), discretization adaptivity, solver adaptivity,
precision adaptivity, etc.

n  Effects are similar when it comes to waiting at
synchronization points

n  Possible solutions for system nonuniformity will improve
programmability, too

[HPC]3, 8 February 2012

Programming practice
n  Prior to possessing exascale hardware, users can prepare

themselves by exploring new programming models
!  on manycore and heterogeneous nodes

n  Attention to locality and reuse is valuable at all scales
!  will produce performance paybacks today and in the future
!  domains of coherence will be variable and hierarchical

n  New algorithms and data structures can be explored
under the assumption that flop/s are cheap and moving
data is expensive

n  Independent tasks that have complementary resource
requirements can be interleaved in time in independently
allocated spaces

[HPC]3, 8 February 2012

Evolution of parallel programming models:
strong scaling within a node with nonuniform coherency domains

shared memory
 (OpenMP)

P P P P P P P P P P

distributed memory
 (MPI)

local

P P P P P

PGAS

local

P P P P P

chip
shared

shared

shared
HPGAS

today’s 1-level models: shared or distributed

tomorrow’s 2- or 3-level models: hybrids

[HPC]3, 8 February 2012

Hybrid programming models not enough
n  Tools for monitoring the availability and predicted

performance of resources within an architecture-adaptive
and application-adaptive are improving

n  However, even perfect knowledge of resource capabilities
at every moment and perfect load balancers will not
rescue billion-thread SPMD implementations of PDE
simulations, etc.
!  cost of rebalancing frequently is too large
!  Amdahl penalty of failing to rebalance is fatal

[HPC]3, 8 February 2012

 Peta to exa for algorithms
n  Things we need to do for exascale will help us at petascale and

terascale
!  Reducing memory requirements and memory traffic
!  Exploiting hybrid and less synchronous parallel programming models
!  Co-design of hardware and software (for, e.g., power management)

n  Though it inveighs against the CS aesthetic of “separation of
concerns”, and involves more issues, co-design requires
similar attitude and aptitude as in, say, MPI programming
today
!  Applications programmers have “bit the bullet” and designed excellent

MPI-based codes, by using quality libraries designed and ported by
specialists

!  Hopefully, we will be able to isolate applications programmers from
many of the hardware and software architectural details, just as we do
today from message-passing details

[HPC]3, 8 February 2012

Peta to exa
n Billion-way parallelism of GigaHertz cores will not

significantly expand today’s million-way flat
parallelism at the node level
!  MPI legacy code will still be usable on the “outside” on

a million nodes
!  Changes will be mainly within a node, where we will

need to evolve thousand-way parallelism: “MPI+X”

n Principal challenges from peta to exa are within
the node, and the burden is shared by the
marketplace at all scales of node aggregation

[HPC]3, 8 February 2012

Path for scaling up applications
n  Weak scale applications up to distributed memory limits

!  proportional to number of nodes
n  Strong scale applications beyond this

!  proportional to cores per node/memory unit
n  Scale the workflow, itself

!  proportional to the number of instances (ensembles)
!  integrated end-to-end simulation

n  Co-design process is staged, with any of these types of
scaling valuable by themselves

n  Big question: does the software for co-design factor? Or is
all the inefficiency at the data copies at interfaces between
the components after a while?

[HPC]3, 8 February 2012

Algorithmic Priority Research Directions (1)
n  Advanced mathematical methods for scientific

understanding in exascale simulations, including in
situ
!  uncertainty quantification, intrusive and nonintrusive
!  optimization, inverse problems, sensitivity
!  analysis and visualization
!  validation and verification

[HPC]3, 8 February 2012

Algorithmic Priority Research Directions (2)
n  Exascale algorithms that expose and exploit multiple levels

of parallelism
!  communication-reducing algorithms
!  synchronization-reducing algorithms
!  intensity-enhancing algorithms

"  increasing order cuts two ways here – smaller storage and more reuse
(good for memory), but also larger workingsets (bad for registers)

!  fault resilient algorithms
n  Algorithmic support for multiphysics, multiscale methods

!  relax the overspecified SPMD and BSP paradigms when
joining multiple different codes

!  analyze stability of coupling

[HPC]3, 8 February 2012

Algorithmic Priority Research Directions (3)
n  Exascale algorithms for constructing and adapting

discrete objects
!  these typically deal with unpredictable, dynamic

structures and workloads and have few flops to hide

[HPC]3, 8 February 2012

A “hot topic” at ICERM, January 2012

[HPC]3, 8 February 2012

•  Exposable concurrency
•  Storage footprint
•  Memory locality
•  Arithmetic intensity
•  Hierarchical domains and frequency of synchronization
•  Fusability across interfaces
•  Opportunity for inspector-executor
•  Predictability of reference and branch
•  Controllability of accuracy requirements and FP precision

Features important to emerging architectures

[HPC]3, 8 February 2012

•  Benefits of adaptation to emerging architectures
•  Avoidance of hardware limitations
•  Mitigation of unavoidable limitations

•  Modes of adaptation to emerging architectures
•  Concentration of locality for communication
•  Relaxation of locality for load-balancing
•  Aggregation to avoid overhead
•  Disaggregation to hide latency
•  Redundant or extra work to avoid communication or

synchronization
•  Catching and tolerating errors in user space
•  Applying machine learning to algorithmic optimization

Adaptations to emerging architectures

[HPC]3, 8 February 2012

•  The usual
•  Abstraction of algorithms into libraries
•  Criticality of open-source libraries for progress
•  Proven practices of scientific software engineering for library

promote and curation
•  The progressive

•  Knowledge about what the new hardware is doing
•  Controls over what the new hardware is doing
•  Performance models that are “good enough” to inform decisions
•  More levels of abstraction in representing ideas and coding for

multiple architectures

Desiderata for software developers

[HPC]3, 8 February 2012

Required software enabling technologies
 Model-related

!  Geometric modelers
!  Meshers
!  Discretizers
!  Partitioners
!  Solvers / integrators
!  Adaptivity systems
!  Random no. generators
!  Subgridscale physics
!  Uncertainty

quantification
!  Dynamic load balancing
!  Graphs and

combinatorial algs.
!  Compression

 Development-related
!  Configuration systems
!  Source-to-source

translators
!  Compilers
!  Simulators
!  Messaging systems
!  Debuggers
!  Profilers

 Production-related
!  Dynamic resource

management
!  Dynamic performance

optimization
!  Authenticators
!  I/O systems
!  Visualization systems
!  Workflow controllers
!  Frameworks
!  Data miners
!  Fault monitoring,

reporting, and recovery

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

[HPC]3, 8 February 2012

!!!"#!

$%&'!

())*+,%-./0!

1/%2*+/3!
&4,'/.*.3+40!
540)./6!&.!%**!

$%/7!
%))*+,%-./0!

65+84!

U. Schwingenschloegl

A. Fratalocchi G. Schuster F. Bisetti R. Samtaney

G. Stenchikov

I. Hoteit V. Bajic M. Mai

See 2011 special issue of Comptes Rendus

Exaflop/s: The why and the
how, D. E. Keyes, Comptes
Rendus de l’Academie des
Sciences 339, 2011, 70—77.

[HPC]3, 8 February 2012

Kennedy’s Challenge, 1962

 “We choose to do [these] things,
not because they are easy, but
because they are hard, because
that goal will serve to organize and
measure the best of our energies
and skills, because that challenge is
one that we are willing to accept,
one we are unwilling to postpone,
and one which we intend to win...”

[HPC]3, 8 February 2012

Acknowledgment:
 today’s Peta-op/s machines

1012 neurons @ 1 KHz = 1 PetaOp/s
1.4 kilograms, 20 Watts

[HPC]3, 8 February 2012

