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Implications of Emerging Architectures on Hyperbolic Solvers 
Hyperbolic PDEs are at the heart of critical energy and environmental applications, 
so we seek to improve the utility of their simulation in pursuit of scientific 
prediction and engineering design by improving (1) the fidelity of the models, (2) 
the quantified accuracy of the results, (3) the efficiency of the computations, and 
(4) the productivity of the users. The first two objectives push us into extreme 
computing environments, where the latter two objectives become increasingly 
daunting. Much mathematics and software appears to be missing if the hardware is 
to be used at its potential. Drawing upon three recent workshops on exascale 
hardware, multiphysics applications, and synchronization-reducing algorithms, as 
well as the second conclave of [HPC]^3, we point out ways in which the 
hyperbolic solvers community will need to adapt to emerging architectures and 
some means of adaptation. 
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n  The scientific 
computing world is 
at a crossroads with 
respect to the push 
towards extreme 
scale 

Remembering Von Neumann 
Born 28 Dec 1903 in Budapest, Hungary 

Died 8 Feb 1957 in Washington D.C., USA 
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Remembering Von Neumann: 
June 1945 

The logical control of the device, that is the proper 
sequencing of its operations can be most efficiently 
carried out by a central control organ. If the device is to 
be elastic, that is as nearly as possible all purpose, then a 
distinction must be made between the specific 
instructions given for and defining a particular problem, 
and the general control organs which see to it that these 
instructions are carried out… 
Any device which is to carry out long and complicated 
sequences of operations (specifically of calculations) 
must have a considerable memory…  
For partial differential equations the initial conditions 
and the boundary conditions may constitute an extensive 
numerical material, which must be remembered 
throughout a given problem… 
For partial differential equations of the hyperbolic or 
parabolic type, integrated along a variable t, the 
(intermediate) results belonging to the cycle t must be 
remembered for the calculation of the cycle t +dt. 
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Remembering Von Neumann: 
October 1947 
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Remembering Von Neumann: 
November 1950 
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n  20 papers in physics 
!  quantum mechanics, ergodic theory, fluid mechanics, 

geophysics 

n  60 papers in pure mathematics 
!  set theory, geometry, game theory 

n  60 papers in applied and computational mathematics  
!  functional analysis, numerical analysis, linear 

programming, statistics 

n Other 
!  computer science, economics, politics 

Von Neumann’s corpus 
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n One of the first commissioners of the U.S. 
Atomic Energy Commission 
!  today, called the Department of Energy 
!  principal in the “Manhattan Project” at Los Alamos 
!  developed the plutonium trigger for the uranium bomb 
!  developed theories of nuclear proliferation and 

“mutually assured destruction” 
!  developed plans for intercontinental ballistic missiles 

(ICBMs) and submarine launched missiles 

n  Consulted for 
!  U.S. Army, CIA, RAND Corporation, Standard Oil 

(today Exxon-Mobile), GE, IBM 

Von Neumann’s service 
JvN’s Los Alamos badge photo 
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n  “All stable processes we shall predict. All unstable processes we 
shall control.”  

n  “There is a time lapse between a mathematical discovery and the 
moment it becomes useful; […] the whole system seems to 
function without any direction, without any reference to 
usefulness, and without any desire to do things which are useful.” 

n  “In mathematics you don't understand things. You just get used 
to them.” 

Quotations from Von Neumann 
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Quotations from Von Neumann 
n  “The sciences do not try to explain, they hardly even try to 

interpret, they mainly make models. By a model is meant a 
mathematical construct which, with the addition of certain 
verbal interpretations, describes observed phenomena. The 
justification of such a mathematical construct is solely and 
precisely that it is expected to work.”  

n  “It would appear that we have reached the limits of what it is 
possible to achieve with computer technology, although one 
should be careful with such statements, as they tend to sound 
pretty silly in 5 years.” 
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Contexts 
n  The scientific computing world is at a crossroads with 

respect to the push towards extreme scale 
n  Proceeded steadily for three decades from mega- (1970s) to 

giga- (1988) to tera- (1998) to peta- (2008) 
!  exa- is qualitatively different and will be much harder 

n  Software and numerics represented at this meeting will 
ultimately confront exascale to maintain sponsor relevance 
!  though obviously, there are many fruitful directions in 

mathematics and software in the modeling of hyperbolic 
equations are architecture-neutral 
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Overlap of interests: IESP and HPC3 
n Exascale’s extremes change the game 

!  mathematicians are now on the front line 
"  without contributions in the form of new mathematics (including 

statistics), the passage to the exascale will yield little fruit 

!  mathematical scientists will find the computational power 
to do things many have wanted 
"  room for creativity in “post-forward” problems 
"  mathematical scientists will participate in cross-disciplinary 

integration – “third paradigm” and “fourth paradigm” 
"  remember that exascale at the lab means petascale on the desk 

n Let’s mention some mathematical opportunities, 
after quickly reviewing the hardware challenges 
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Why exa- is different 

(Intel Sandy Bridge, 2.27B transistors) 

c/o T. Schulthess (ETHZ); c/o P. Kogge (ND) et al. DARPA study 

Going across the die requires up to an order of magnitude 
more ! 
DARPA study predicts that by 2019: 
!  Double precision FMADD flop: 11pJ 
!  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall) 

Which steps of FMADD take more energy?  

input 
input 

input 

output 

four 
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Why exa- is different, cont. 

Moore’s Law (1965) does not end but 
Dennard’s MOSFET scaling (1972) does 

Eventually processing will be 
limited by transmission 

Robert Dennard, IBM 
(inventor of DRAM, 1966) 
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“A pJ wasted on moving data is 
not only a pJ that is not 
available for communication, 
but also a pJ that must often be 
matched by other pJs that must 
be expended to monitor the 
progress of the data during the 
movement, to correct for any 
errors, and to manage the 
suspension and reawakening of 
any circuits that source or sink 
the data.” 
P. Kogge, et al. (2008), p. 244 

 
 

Parsimony in communication 
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•  The 2011 Gordon Bell peak prize won 
by Yukihiro Hasegawa et al. of RIKEN 
at more than 3 Pflop/s sustained 

–  First-principles calculation of electronic 
states of a silicon nanowire with 100,000 
atoms on the “Kei computer”  

–  taking industry leading 22 nm device size 
in 2011 down to 10 nm 

–  10 nm not expected for CMOS transistors 
until 2015 

–  bootstrapping the next generation of 
semiconductors! 

Bootstrapping to exa- with nano- on peta- 
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What will first “general purpose” exaflop/s 
machines look like? 

n  Hardware: many potentially exciting paths beyond today’s 
CMOS silicon-etched logic, but not commercially at scale 
within the decade 

n  Software: many ideas for general-purpose and domain-
specific programming models beyond “MPI + X”, but not 
penetrating the main CS&E workforce within the decade 
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Prototype exascale hardware:  
a heterogeneous, distributed memory 
GigaHz KiloCore MegaNode system 

c/o P. Beckman (ANL) 

~3 
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Some exascale themes (see reports) 

#  Clock rates cease to increase while arithmetic capacity 
continues to increase dramatically w/concurrency 
consistent with Moore’s Law 

#  Storage capacity diverges exponentially below 
arithmetic capacity 

#  Transmission capacity diverges exponentially below 
arithmetic capacity 

#  Mean time between hardware interrupts shortens 
#  Billions of dollars of scientific software hang in the 

balance until better algorithms arrive to span the 
architectural gap 
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Hurdle #1: power requires slower clocks 
and greater concurrency 

c/o SciDAC Review 16, February 2010 



[HPC]3, 8 February 2012 

 
Hurdle #2: memory bandwidth could eat 

up the entire power budget 
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Bytes/FLOP ratio (# bytes per peak FLOP) 

Stacked JEDEC 30pj/bit 2018 ($20M) 

Advanced 7pj/bit Memory ($100M) 

Enhanced 4pj/bit Advanced Memory ($150M 
cumulative) 

Feasible Power Envelope (20MW) 

c/o John Shalf (LBNL) 

Rule of prefixes " 
“Pico times Exa is Mega” 

Example: 
“PicoJ times Exa/s is MegaW” 

20 MW is power consumption of a town 
of 14,000 people in an OECD country 
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Hurdle #3: memory capacity could eat 
up the entire fiscal budget 
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Petabytes of Memory 

Cost in $M (8 gigabit modules) 

Cost in $M (16 Gigabit modules) 

1/2 of $200M system 

c/o John Shalf (LBNL) 
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Implications of operating on the edge 
n  Draconian reduction required in power per flop and per 

byte will make computing and copying data less reliable 
!  voltage difference between “0” and “1” will be reduced 
!  circuit elements will be smaller and subject to greater 

physical noise per signal 
!  there will be more errors that must be caught and corrected 

n  Power may have to be cycled off and on or clocks slowed 
and speeded based on compute schedules and based on 
cooling capacity 
!  makes per node performance rate unreliable 
!  “Race-to-Halt” (RTH) is proposed as an alternative to power 

cycling, due to persistent leakage currents (budget similar to 
human brain basal energy), but thermal protection may 
overrule 
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Implications of operating on the edge 
n  Expanding the number of nodes (processor-memory units)  

beyond 106 would not a serious threat to algorithms that lend 
themselves to well-amortized precise load balancing  
!  provided that the nodes are performance reliable 

n  A real challenge is expanding the number of cores on a node 
to 103 

!  must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less (basically “strong” scaling) 

n  It is already about 103 slower to to retrieve an operand from 
main DRAM memory than to perform an arithmetic 
operation – will get worse by a factor of ten 
!  almost all operands must come from registers or upper cache 
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Why push to extreme scale? 
(DOE CSGF application essay question #3) 
n  Better resolve model’s full, natural range of length or time scales 
n  Accommodate physical effects with greater fidelity 
n  Allow the model degrees of freedom in all relevant dimensions  
n  Better isolate artificial boundary conditions (e.g., in PDEs) or better 

approach realistic levels of dilution (e.g., in MD) 
n  Combine multiple complex models 
n  Solve an inverse problem, or perform data assimilation  
n  Perform optimization or control 
n  Quantify uncertainty 
n  Improve statistical estimates  

n  Operate without models (machine learning)  

“Third paradigm” 

“Fourth paradigm” 
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“Missing” mathematics 
n New formulations with  

!  greater arithmetic intensity (flops per bytes moved 
into and out of registers and upper cache) 

!  reduced communication 
!  reduced synchronization 
!  assured accuracy with (adaptively) less floating-

point precision 
n Quantification of trades between limiting resources 
n Plus all of the exciting analytical agendas that 

exascale is meant to exploit 
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Arithmetic intensity illustration 

Roofline model of 
numerical kernels on 
an NVIDIA C2050 
GPU (Fermi). The 
‘SFU’ label is used 
to indicate the use of 
special function 
units and ‘FMA’ 
indicates the use of 
fused multiply-add 
instructions.  
 
(The order of fast 
multipole method 
expansions was set 
to p = 15.) 

c/o L. Barba (BU); cf. “Roofline Model” of S. Williams (Berkeley) 
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Miracles “need not apply” 

n We should not expect to escape causal dependencies 
!  if the input-to-output map of a problem description has 

nonlocal data dependencies, and if we need the solution 
accurately everywhere, we will have nonlocal 
communication 

n But we should ask fundamental questions: 
!  for the science of interest, do we need to evaluate the 

output everywhere?  
"  note that FEniCS allows users to specify this 

!  is there another formulation that can produce the same 
required scientific observables in less time and energy? 
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How are most workhorse simulations 
implemented at the infra-petascale today? 

n Explicit methods or iterative iterative methods based 
on stencil-op/SpMV with data decomposition and 
message-passing 
!  each individual processor works on a portion of the original 

problem and exchanges information at its boundaries with other 
processors that own portions with which it interacts causally, to 
evolve in time or to establish equilibrium 

!  computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling 

n The programming model is SPMD/BSP/CSP 
!  Single Program, Multiple Data 
!  Bulk Synchronous Programming  
!  Communicating Sequential Processes 
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Estimating scalability  
 n  Given complexity estimates of the leading terms of: 

!  the concurrent computation (per iteration phase) 
!  the concurrent communication 
!  the synchronization frequency 

n  And a model of the architecture including: 
!  internode communication (network topology and protocol reflecting 

horizontal memory structure) 
!  on-node computation (effective performance parameters including 

vertical memory structure) 

n  One can estimate optimal concurrency and optimal 
execution time 
!  on per-iteration basis 
!  simply differentiate time estimate in terms of problem size N and 

processor number P with respect to P 
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3D stencil computation weak scaling 
(assume fast local network, tree-based global reductions) 

n  Total wall-clock time per iteration (ignoring local comm.) 

n  For optimal P,                , or   
     
    or 
 
n   P can grow linearly with N, and running time increases 

“only” logarithmically – as good as weak scaling can be! 
n  Problems: (1) assumes perfect synchronization,  
                       (2) log of a billion may be “large”  

T (N,P) = A N
P
+C logP

!T
!P

= 0 !A N
P2

+
C
P
= 0

Popt =
A
C
N NB: ratio of local to global 

communication must be studied 
before accepting this asymptotic 
estimate that neglects local; 
wide halos are increasingly 
common 
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SPMD parallelism w/ domain decomposition: 
an endangered species? 

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian) 

!1 

!2 

!3 

A23 A21 A22 
rows assigned 

to proc “2” 
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Workhorse innards: e.g., Krylov-Schwarz,  
a bulk synchronous implicit solver 

local 
scatter 

Jac-vec 
multiply 

precond 
sweep 

daxpy  inner     
product 

Krylov 
iteration 

…

Idle time due to load imbalance becomes a 
challenge at, say, one billion threads, when 
one thread can hold up all of the rest at a 
synchronization point 

P1: 

P2: 

Pn: 
!

communication imbalance computation imbalance 
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Our programming idiom is nested loops, e.g.,  
for Newton-Krylov-Schwarz 

  for (k = 0; k < n_Newton; k++) {   
     compute nonlinear residual and Jacobian   

            for (j = 0; j < n_Krylov; j++) {   
           forall (i = 0; i < n_Precon ; i++) { 

                          solve subdomain problems concurrently 
                  } // End of loop over subdomains  
                  perform Jacobian-vector product 
                  enforce Krylov basis conditions 
                  update optimal coefficients  
                  check linear convergence 
             } // End of linear solver 
             perform DAXPY update  
             check nonlinear convergence 
        } // End of nonlinear loop 

Newton 
loop 

Krylov 
loop 

concurrent 
preconditioner 

loop 

Outer loops (not shown): continuation, implicit timestepping, optimization 
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These loops, with their artifactual orderings, 
need to be replaced with DAGs 

#  Diagram shows a dataflow 
ordering of the steps of a 4!4 
symmetric generalized 
eigensolver 

#  Nodes are tasks, color-coded 
by three types, and edges are 
data dependencies 

#  Original algorithm 
completed each task before 
starting the next (subroutine 
boundaries) and each task 
took longer (overconstrained 
by loop-based operation 
order) 

c/o H. Ltaief (KAUST) 

T
I
M
E 
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Multiphysics w/ legacy codes: 
an endangered species? 

n  Many multiphysics codes operate like this, where the models may 
occupy the same domain in the bulk (e.g., reactive transport) or 
communicate at interfaces (e.g., ocean-atmosphere)* 

n  The data transfer cost represented by the blue and green arrows 
may be much higher than the computation cost of the models, 
even apart from first-order operator splitting error and possible 
instability  

Model 1 

Model 2
(subcycled) 

*see ANL MCS-TM 321 from DOE ICiS workshop (Keyes, et al., 2011) 
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Many research frontiers have the algebraic 
and software structure of multiphysics 

#  Exascale is motivated by these: 
#  uncertainty quantification, inverse problems, 

optimization, immersive visualization and steering 

#  These may carry auxiliary data structures to/from 
which blackbox model data is passed and they act 
like just another “physics” to the hardware 
#  pdfs, Lagrange multipliers, etc. 

#  Today’s separately designed blackbox algorithms 
for these may not live well on exascale hardware: co-
design may be required to reduce data motion 
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Multiphysics layouts must invade blackboxes 

ocean 
atm 

ice 

c/o W. D. Gropp (UIUC) 

n  Each application must 
first be ported to 
extreme scale 
(distributed, hierarchical 
memory) 

n  Then applications may 
need to be interlaced at 
the data structure level 
to minimize copying and 
allow work stealing at 
synchronization points 
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Bad news/good news (1) 
#  Users will have to control data motion 

#  carries the highest energy cost in the exascale 
computational environment 

#  Users will finally get the privilege of 
controlling the vertical data motion 
#  horizontal data motion under control of users under Pax 

MPI, already  
#  but vertical replication into caches and registers was 

(until now with GPUs) scheduled and laid out by 
hardware and runtime systems, mostly invisibly to users 
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Bad news/good news (2) 
#  “Optimal” formulations and algorithms may lead 

to poorly proportioned computations for exascale 
hardware resource balances 
#  today’s “optimal” methods presume flops are expensive and 

memory and memory bandwidth are cheap 

#  Architecture may lure users into more 
arithmetically intensive formulations (e.g., fast 
multipole, lattice Boltzmann, rather than mainly 
PDEs) 
#  tomorrow’s optimal methods will (by definition) evolve to 

conserve what is expensive 
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Bad news/good news (3) 
#  Hardware nonuniformity may force 

abandonment of the Bulk Synchronous 
Programming (BSP) paradigm 
#  it will be impossible for the user to control load 

balance sufficiently to make it work 

#  Hardware and algorithmic nonuniformity will 
be indistinguishable at the performance level 
#  good solutions for the dynamically load balancing in 

systems space will apply to user space, freeing users 
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Bad news/good news (4) 
#  Default use of high precision may come to an end, 

as wasteful of storage and bandwidth 
#  we will have to compute and communicate “deltas” between 

states rather than the full state quantities, as we did when double 
precision was expensive (e.g., iterative correction in linear 
algebra) 

#  a combining network node will have to remember not just the last 
address, but also the last values, and send just the deltas 

#  Equidistributing errors properly while 
minimizing resource use will lead to innovative 
error analyses in numerical analysis 
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Bad news/good news (5) 
#  Fully deterministic algorithms may simply come 

to be regarded as too synchronization-vulnerable 
#  Rather than wait for data, we may need to infer it and move on  

#  A rich numerical analysis of algorithms that 
make use of statistically inferred “missing” 
quantities may emerge 
#  Machine learning, sensitivity analysis, estimates from 

approximate Green’s functions are among the techniques that 
will be called up to analyze or minimize the numerical perils of 
operating without delayed data 
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Philosophy of an algorithmicist 
n  Applications are given (as function of time) 
n  Architectures are given (as function of time) 
n  Algorithms and software must be adapted or created to bridge 

to hostile architectures for the sake of the complex applications 
!  as important as ever today, with transformation of Moore’s Law 

from speed-based to concurrency-based, due to power considerations 
!  scalability still important, but new memory-bandwidth stresses arise 

when on-chip memories are shared 
!  greatest challenge is lack of performance robustness of individual 

cores, which can spoil load balance 
n  Knowledge of algorithmic capabilities can usefully influence  

!  the way applications are formulated 
!  the way architectures are constructed 

n  Knowledge of application and architectural opportunities can 
usefully influence algorithmic development 
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How will PDE computations adapt? 
n  Programming model will still be message-passing on the 

outside (due to large legacy code base), adapted to 
multicore processors beneath a relaxed synchronization 
MPI-like interface 

n  Load-balanced blocks, scheduled today with nested loop 
structures will be separated into critical and non-critical 
parts 

n  Critical parts will be scheduled with directed acyclic 
graphs (DAGs) 

n  Noncritical parts will be made available for work-stealing 
in economically sized chunks 
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Adaptation to  
asynchronous programming styles 

n  To take full advantage of such asynchronous algorithms, we 
need to develop greater expressiveness in scientific 
programming 
!  create separate threads for logically separate tasks, whose priority is 

a function of algorithmic state, not unlike the way a time-sharing OS 
works 

!  join priority threads in a directed acyclic graph (DAG), a task graph 
showing the flow of input dependencies; fill idleness with noncritical 
work or steal work 

n  Steps in this direction  
!  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne), 

2009] 
!  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]  
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n  Can write code in styles that do not require artifactual 
synchronization 

n  Critical path of a nonlinear implicit PDE solve is essentially 
! lin_solve, bound_step, update; lin_solve, bound_step, update ! 

n  However, we often insert into this path things that could be done 
less synchronously, because we have limited language 
expressiveness 
!  Jacobian and preconditioner refresh 
!  convergence testing 
!  algorithmic parameter adaptation 
!  I/O, compression 
!  visualization, data mining 

 

Evolution of Newton-Krylov-Schwarz: 
breaking the synchrony stronghold 
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Some major challenges that stay the same  
in peta to exa 

n  Poor scaling of collectives due to internode latency 
n  Poor performance of SpMV due to shared intranode 

bandwidth 
n  Poor scaling of coarse grids due to insufficient concurrency 
n  Lack of reproducibility due to floating point 

noncommutativity and algorithmic adaptivity (including 
autotuning) in efficient production mode 

n  Difficulty of understanding and controlling vertical 
memory transfers 
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Sources of nonuniformity 
n  System 

!  manufacturing, OS jitter, TLB/cache performance variations, 
network contention, dynamic power management, soft errors, hard 
component failures, software-mediated resiliency, etc. 

n  Algorithmic 
!  physics at gridcell/particle scale (e.g., table lookup, equation of 

state, external forcing), discretization adaptivity, solver adaptivity, 
precision adaptivity, etc. 

n  Effects are similar when it comes to waiting at 
synchronization points 

n  Possible solutions for system nonuniformity will improve 
programmability, too 
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Programming practice 
n  Prior to possessing exascale hardware, users can prepare 

themselves by exploring new programming models  
!  on manycore and heterogeneous nodes 

n  Attention to locality and reuse is valuable at all scales  
!  will produce performance paybacks today and in the future 
!  domains of coherence will be variable and hierarchical 

n  New algorithms and data structures can be explored 
under the assumption that flop/s are cheap and moving 
data is expensive 

n  Independent tasks that have complementary resource 
requirements can be interleaved in time in independently 
allocated spaces 
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Evolution of parallel programming models: 
strong scaling within a node with nonuniform coherency domains 

shared memory 
 (OpenMP) 

P P P P P P P P P P 

distributed memory 
 (MPI) 

local 

P P P P P 

PGAS 

local 

P P P P P 

chip 
shared 

shared 

shared 
HPGAS 

today’s 1-level models: shared or distributed 

tomorrow’s 2- or 3-level models: hybrids 
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Hybrid programming models not enough 
n  Tools for monitoring the availability and predicted 

performance of  resources within an architecture-adaptive 
and application-adaptive are improving 

n  However, even perfect knowledge of resource capabilities 
at every moment and perfect load balancers will not 
rescue billion-thread SPMD implementations of PDE 
simulations, etc. 
!   cost of rebalancing frequently is too large 
!  Amdahl penalty of failing to rebalance is fatal 
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 Peta to exa for algorithms 
n  Things we need to do for exascale will help us at petascale and 

terascale 
!  Reducing memory requirements and memory traffic 
!  Exploiting hybrid and less synchronous parallel programming models 
!  Co-design of hardware and software (for, e.g., power management) 

n  Though it inveighs against the CS aesthetic of “separation of 
concerns”, and involves more issues, co-design requires 
similar attitude and aptitude as in, say, MPI programming 
today 
!  Applications programmers have “bit the bullet” and designed excellent 

MPI-based codes, by using quality libraries designed and ported by 
specialists 

!  Hopefully, we will be able to isolate applications programmers from 
many of the hardware and software architectural details, just as we do 
today from message-passing details 
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Peta to exa 
n Billion-way parallelism of GigaHertz cores will not 

significantly expand today’s million-way flat 
parallelism at the node level 
!  MPI legacy code will still be usable on the “outside” on 

a million nodes 
!  Changes will be mainly within a node, where we will 

need to evolve thousand-way parallelism: “MPI+X” 

n Principal challenges from peta to exa are within 
the node, and the burden is shared by the 
marketplace at all scales of node aggregation 
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Path for scaling up applications 
n  Weak scale applications up to distributed memory limits 

!  proportional to number of nodes 
n  Strong scale applications beyond this 

!  proportional to cores per node/memory unit 
n  Scale the workflow, itself 

!  proportional to the number of instances (ensembles) 
!  integrated end-to-end simulation 

n  Co-design process is staged, with any of these types of 
scaling valuable by themselves 

n  Big question: does the software for co-design factor? Or is 
all the inefficiency at the data copies at interfaces between 
the components after a while? 
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Algorithmic Priority Research Directions (1) 
n  Advanced mathematical methods for scientific 

understanding in exascale simulations, including in 
situ 
!  uncertainty quantification, intrusive and nonintrusive 
!  optimization, inverse problems, sensitivity 
!  analysis and visualization 
!  validation and verification 
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Algorithmic Priority Research Directions (2) 
n  Exascale algorithms that expose and exploit multiple levels 

of parallelism 
!  communication-reducing algorithms 
!  synchronization-reducing algorithms 
!  intensity-enhancing algorithms 

"  increasing order cuts two ways here – smaller storage and more reuse 
(good for memory), but also larger workingsets (bad for registers) 

!  fault resilient algorithms 
n  Algorithmic support for multiphysics, multiscale methods 

!  relax the overspecified SPMD and BSP paradigms when 
joining multiple different codes 

!  analyze stability of coupling 
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Algorithmic Priority Research Directions (3) 
n  Exascale algorithms for constructing and adapting 

discrete objects 
!  these typically deal with unpredictable, dynamic 

structures and workloads and have few flops to hide 
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A “hot topic” at ICERM, January 2012 
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•  Exposable concurrency 
•  Storage footprint 
•  Memory locality 
•  Arithmetic intensity 
•  Hierarchical domains and frequency of synchronization 
•  Fusability across interfaces 
•  Opportunity for inspector-executor 
•  Predictability of reference and branch 
•  Controllability of accuracy requirements and FP precision 

Features important to emerging architectures 
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•  Benefits of adaptation to emerging architectures 
•  Avoidance of hardware limitations 
•  Mitigation of unavoidable limitations 

•  Modes of adaptation to emerging architectures 
•  Concentration of locality for communication 
•  Relaxation of locality for load-balancing 
•  Aggregation to avoid overhead  
•  Disaggregation to hide latency 
•  Redundant or extra work to avoid communication or 

synchronization 
•  Catching and tolerating errors in user space 
•  Applying machine learning to algorithmic optimization 

Adaptations to emerging architectures 
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•  The usual 
•  Abstraction of algorithms into libraries 
•  Criticality of open-source libraries for progress 
•  Proven practices of scientific software engineering for library 

promote and curation 
•  The progressive 

•  Knowledge about what the new hardware is doing 
•  Controls over what the new hardware is doing 
•  Performance models that are “good enough” to inform decisions 
•  More levels of abstraction in representing ideas and coding for 

multiple architectures 

Desiderata for software developers 
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Required software enabling technologies 
      Model-related 

!  Geometric modelers 
!  Meshers 
!  Discretizers 
!  Partitioners 
!  Solvers / integrators 
!  Adaptivity systems 
!  Random no. generators 
!  Subgridscale physics  
!  Uncertainty 

quantification 
!  Dynamic load balancing 
!  Graphs and 

combinatorial algs. 
!  Compression  
 

        Development-related        
!  Configuration systems 
!  Source-to-source 

translators 
!  Compilers 
!  Simulators 
!  Messaging systems 
!  Debuggers 
!  Profilers 
 

      Production-related 
!  Dynamic resource 

management 
!  Dynamic performance 

optimization 
!  Authenticators 
!  I/O systems 
!  Visualization systems 
!  Workflow controllers 
!  Frameworks 
!  Data miners 
!  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 
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See 2011 special issue of Comptes Rendus 

Exaflop/s: The why and the 
how, D. E. Keyes, Comptes 
Rendus de l’Academie des 
Sciences 339, 2011, 70—77. 
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Kennedy’s Challenge, 1962 

    “We choose to do [these] things, 
not because they are easy, but 
because they are hard, because 
that goal will serve to organize and 
measure the best of our energies 
and skills, because that challenge is 
one that we are willing to accept, 
one we are unwilling to postpone, 
and one which we intend to win...”  
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Acknowledgment: 
 today’s Peta-op/s machines  

1012 neurons @ 1 KHz = 1 PetaOp/s 
1.4 kilograms, 20 Watts 
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