
PetClaw: A Scalable Parallel Nonlinear Wave Propagation Solver for Python
Amal Alghamdi, Aron Ahmadia, David I. Ketcheson Matthew G. Knepley Kyle T. Mandli Lisandro Dalcin
King Abdullah University of Science & Technology University of Chicago University of Washington CIMEC

Keywords: wave propagation, PETSc, petsc4py, Clawpack,
PyClaw

Abstract

We present PetClaw, a scalable distributed-memory solver
for time-dependent nonlinear wave propagation. PetClaw
unifies two well-known scientific computing packages, Claw-
pack and PETSc, using Python interfaces into both. We rely
on Clawpack to provide the infrastructure and kernels for
time-dependent nonlinear wave propagation. Similarly, we
rely on PETSc to manage distributed data arrays and the com-
munication between them. We describe both the implementa-
tion and performance of PetClaw as well as our challenges
and accomplishments in scaling a Python-based code to tens
of thousands of cores on the BlueGene/P architecture. The
capabilities of PetClaw are demonstrated through application
to a novel problem involving elastic waves in a heterogeneous
medium. Very finely resolved simulations are used to demon-
strate the suppression of shock formation in this system.

1. INTRODUCTION
Numerical solvers for systems of hyperbolic conservation

laws are an important tool in the computational scientist’s
toolbox. Clawpack is a widely used, state-of-the-art package
for solving hyperbolic systems of equations. It has been used
to solve problems in astrophysics, geodynamics, magnetohy-
drodynamics, oceanography, porous media flow, and numer-
ous other application areas. In this work, we present a parallel
extension of Clawpack based on incorporation of several ex-
isting tools. Efforts have been made previously to parallelize
Clawpack for distributed memory architectures, demonstrat-
ing a general need for a scalable version of the software.
The clear standard for developing a scalable Clawpack im-
plementation is the Message Passing Interface, which is uni-
versally supported by all major supercomputers. Instead of
writing a direct interface into the MPI libraries, we make use
of the Portable Extensible Toolkit for Scientific Computing
(PETSc) to provide a layer of abstraction between the dis-
cretized systems of equations and their mapping to distributed
processes. We use the novel approach of unifying two large
scientific libraries through their Python interfaces (PyClaw
and petsc4py), explicitly relying on numpy to seamlessly mi-
grate numerical data between Python, C, and Fortran.

The paper is organized as follows. In section 2., we de-
scribe the physical and numerical structure of hyperbolic con-

servation laws as well as our motivation for developing scal-
able high-performance software tools for their study. In sec-
tion 3., we describe the various software packages that Pet-
Claw makes use of. We briefly discuss Python and NumPy,
and then introduce Clawpack and PETSc, as well as the the
Python packages that provide interfaces to them. In section
4., we discuss the implementation of PetClaw and its perfor-
mance in serial and parallel. We provide an overview of our
approach to interface orthogonally into the two large, sepa-
rate codebases written in Fortran and C. We also present an
overview of our object-oriented design scheme, with a focus
on the inheritance relationship between the PetClaw and Py-
Claw drivers. We present computational results demonstrat-
ing that our serial Python-based code suffers almost no degra-
dation in performance in comparison with a pure Fortran ver-
sion. Additionally, we show scalability results, for test prob-
lems involving advection and elasticity, to 16,384 cores on
an IBM BlueGene/P supercomputer. Finally, in section 5. we
demonstrate the usefulness of our code by studying the be-
havior of nonlinear elastic waves in a periodic medium.

2. NUMERICAL WAVE PROPAGATION
2.1. Hyperbolic Conservation Laws

Many important physical problems may be modelled by
systems of hyperbolic conservation laws. In three dimen-
sions, these take the form

qt + f (q)x +g(q)y +h(q)z = 0, (1)

where the vector-valued function q(x, t) represents the con-
served quantities and f (q),g(q),h(q) are fluxes. As a few
important examples of (1), we mention the Euler equations
of compressible fluid dynamics, the shallow water equations,
Maxwell’s equations describing electromagnetic waves, and
the equations of elasticity.

2.2. Computational Considerations
Computational solution of nonlinear hyperbolic equations

is often costly, for two reasons. First, solutions of (1) gener-
ically develop singularities (shocks) after a short time, even
if the initial data are smooth. Accurate modeling of solutions
with shocks generally requires the use of Riemann solvers
and nonlinear limiters, which are both expensive. Thus it is
essential that these routines are implemented as efficiently as
possible.

Second, many hyperbolic problems exhibit a wide range of
physical scales. In fluid dynamics, small scales are induced by
the formation of turbulence. While turbulence models may be
used to avoid resolving these scales computationally, direct
numerical simulation is necessary for validation of modelling
codes or to gain deeper insight. In many applications in elas-
ticity or electromagnetics, waves propagate in a material with
fine structure; e.g. metamaterials, waveguides, or even nat-
urally occurring materials like the earth. Effective medium
techniques may be used to avoid resolving the fine structure
computationally, but direct simulations are necessary to val-
idate these models and give better understanding. In section
5., we give an example of such an application where it seems
that homogenization techniques are unlikely to capture the
appropriate dynamics. In other applications different scales
arise for various reasons. For instance, in tsunami modeling
it is necessary to model entire oceans, but one is interested in
predicting run-up on a scale of meters.

The appearance of widely varying spatial scales makes
these problems computationally expensive since it demands
the use of very fine grids. If the small scales appear only in
small, localized regions, this can be mitigated by the use of
adaptive mesh refinement. However, for direct simulation of
waves in periodic or random media fine meshes are typically
required over all or most of the computational domain. These
situations demand the use of massive parallelism.

2.3. Balance Laws
Hyperbolic equations describe wave motion. Many impor-

tant problems involve wave motion as well as other kinds of
dynamics and may be written as balance laws:

qt + f (q)x +g(q)y +h(q)z = ψ(q,x, t). (2)

For example, the purely hyperbolic systems for fluid dynam-
ics and electromagnetism described above are obtained by ne-
glecting diffusive effects. These diffusive effects are signifi-
cant for many important applications and must be included in
ψ. Other problems in areas like combustion involve reaction
terms that also may be included in ψ. The integration of these
terms is often also very challenging and may require costly
solvers.

3. SOFTWARE TOOLS
We have chosen to develop PetClaw in the high level

scripting language Python, in order to simplify code devel-
opment and maintenance, make maximum use of existing
codes and packages in a variety of languages, and facili-
tate extensibility. We address the computational difficulties
mentioned in the previous section by incorporating wrapped
Fortran code (from Clawpack) for the expensive limiter and
Riemann solver routines, and by using wrapped C/MPI code
(from PETSc) for distributed parallelism.

numpy

Python

Fortran

C

Python
Extension

pyclaw

f2py

petsc4py

PETSc MPI

Clawpack kernels

Figure 1. Modular structure of the PetClaw code, with a
focus on the orthogonality of the Fortran kernels from the
parallel decomposition through PETSc

The relation between the various software components that
PetClaw makes use of is indicated in Figure 1. One important
aspect of PetClaw is the extensive use of numpy to interface
Python and extension module code. We describe this aspect
in further detail in this section as we describe the components
that constitute PetClaw. A second important feature of Pet-
Claw is the orthogonal decomposition of the Clawpack rou-
tines for wave propagation in Fortran from PETSc objects and
methods, allowing us to completely hide the details of the par-
allel decomposition from the the wave propagation kernels.
We detail this further in section 4..

3.1. Python and numpy
Python is a widely used scripting language, and has been

employed for large scale industrial (Google App Engine) and
scientific [5] uses. It has a concise, readable syntax and a large
support library of specialized modules, including symbolic
computation [19], which is absent from scientific libraries in
C and Fortran. Moreover, Python uses dynamic loading of
shared libraries to incorporate modules so that its function-
ality can be extended smoothly at runtime. Recently, Python
has become a popular choice for scientific computing [9], and
many established packages have acquired Python interfaces,
including PETSc [4] and Trilinos [15], which provide linear
algebraic operations and solvers.

The Python numpy [14] module is a generic interface to
raw memory arrays, such as those used in C and Fortran.
It understands multidimensional arrays with arbitrary layout,
yet accomodates flexible indexing syntax, such as slicing.
numpy provides an excellent substrate for no-copy commu-
nication of data structured between Python and lower level
languages, such as C and Fortran. In fact, most important
structures, e.g. vectors and sparse matrices, can be directly
accessed with no translation at all. Thus, a properly struc-
tured top-level Python script can flexibly drive the underlying
simulation with minimal loss of efficiency.

3.2. Clawpack
Clawpack stands for “Conservation Laws Package” and

was initially developed for linear and nonlinear hyperbolic
systems of conservation laws, with a focus on implement-
ing high-resolution Godunov type methods using limiters in
a general framework applicable to many applications. These
finite volume methods require a Riemann solver to resolve
the jump discontinuity at the interface between two grid cells
into waves propagating into the neighboring cells.

The Clawpack software (www.clawpack.org) and its exten-
sions consisting of open source Fortran code have been freely
available since 1994. More than 7,000 users have registered to
download this software since it first appeared and have used
it on a wide variety of problems.

The wave propagation algorithms implemented in Claw-
pack are described in detail in [12, 13]. The Riemann solver
takes cell averages in two neighboring grid cells and deter-
mines a set of waves propagating away from the cell inter-
face in the solution to the Riemann problem (the conserva-
tion law with piecewise constant intial data). A simple update
of the cell averages based on the distance these waves propa-
gate into the cells gives the classic Godunov method, a robust
but only first-order accurate numerical method. Second or-
der correction terms can be defined in terms of these waves
and then limiters are applied to these terms in order to avoid
non-physical oscillations in the solution. This is crucial near
discontinuities for problems involving shock waves.

Clawpack is a very general tool in the sense that it is eas-
ily adapted to solve any hyperbolic system of conservation
laws (1). The only modification required for solving a par-
ticular hyperbolic system is a change to the Riemann solver
routine. In fact, Clawpack is well-suited to handle even more
general hyperbolic systems that are not in conservation form
or that include coefficients that vary in time and space. The
application presented in Section 5. is an example of the lat-
ter. In order to apply Clawpack to any such problem, it is
necessary only that the Riemann solution can be accurately
approximated.

3.3. PyClaw
PyClaw is a Python package designed to facilitate the

extension of the basic Clawpack routines described in Sec-
tion 3.2.. This is accomplished primarily by abstracting the
gridded data and evolution routines in Clawpack, defining a
generic interface for them to interact through. By separating
and defining interfaces for the core components of Clawpack,
we create the ability to modify and extend the original rou-
tines with a minimal amount of effort. The solver class,
for example, has been designed to be extended to new types
of equations and methods. The ease at which this is accom-
plished is one of the main benefits of working with PyClaw
rather than Clawpack. These ideas become more powerful

when one utilizes Python packages, such as f2py, fwrap,
and Cython, that facilitate the wrapping of other languages,
allowing users to extend PyClaw using languages such as
Fortran and C. All of these additions on top of the algorithms
in Clawpack allow for easy extensibility and flexibility in the
implementation of new applications and algorithms to Claw-
pack.

3.4. PETSc
The Portable Extensible Toolkit for Scientific Computing

(PETSc) [1, 2], is a set of libraries for the scalable solution of
scientific applications modeled by partial differential equa-
tions. PETSc employs a common workflow both to imple-
ment and test an application on a workstation initially, and
to deploy it on the largest supercomputers. Scientific applica-
tions built on PETSc have been successfully scaled to billions
of unknowns and hundreds of thousands of cores [17].

The core focus of PETSc has traditionally been the scal-
able solution of linear and nonlinear systems of equations,
using sparse matrices and matrix-free methods. However, it
possesses a variety of useful software constructs such as the
Distributed Array (DA) that automatically manages the paral-
lel mapping, distribution, and coordination of a topologically
Cartesian mesh and associated fields discretized over it. A DA
is employed to manage data parallelism for PetClaw simula-
tions.

The DA is partitioned into rectangular blocks which tile
the domain. Ghost regions are extended out into neighboring
blocks by a specified number of vertices (equal to the sten-
cil width), meaning the ghosted domains are also rectangular.
By default, PETSc attempts to balance the total number of
vertices in each domain, as well as minimize communication
which means making domains approximately square.

Since efficient wave propagation algorithms are generally
explicit, PETSc’s solvers are not needed in applying PetClaw
to purely hyperbolic problems. In the future we plan to de-
velop PetClaw for application to general balance laws (2).
To apply Clawpack to such problems, the user must provide a
way of integrating the source term ψ. Often this is as great a
challenge as solving the hyperbolic part, and may require im-
plicit discretizations. For instance, ψ may include parabolic
terms, whose efficient numerical integration relies on large
linear solves. Clawpack does not provide any facility of its
own for discretizing and solving such source terms. A major
advantage obtained by incorporating PETSc into Clawpack
is the access to PETSc’s efficient scalable solvers such as
its multigrid solvers, which have been shown to be effective
for parabolic problems [6]. Using these solvers in PetClaw
should be relatively straightforward since petsc4py (see the
next section) provides an interface to them.

http://www.clawpack.org

3.5. petsc4py
petsc4py is a set of wrappers which allow PETSc to be

used directly from Python. It encompasses almost the entire
functionality of PETSc, and at the same time uses native id-
ioms to make the PETSc interface more “pythonic”. Thus,
petsc4py allows users to leverage the full power of Python
while maintaining the efficiency and scalability of PETSc.
Most importantly, in PetClaw the use of petsc4py makes it
possible to use legacy serial Fortran kernels without modi-
fication. Only the high-level Python driver code is aware of
parallel structures. Close integration with numpy allows ar-
ray data to flow seamlessly between C and Python.

petsc4py is implemented using the Cython [18, 3] com-
piler. This allows for excellent efficiency, using code gener-
ation techniques to remove most of the overhead of an inter-
preted language. Cython also provides mechanisms targeting
interoperability between petsc4py and other Python wrapper
generators for C or Fortran (eg. SWIG and F2Py), easing the
reutilization of third-party codes using PETSc.

4. IMPLEMENTATION AND PERFOR-
MANCE

In this section, we discuss the implementation of PetClaw
based on the tools discussed in the previous section. We then
present results on the serial and parallel performance of Pet-
Claw.

4.1. The PetClaw Code
It is generally accepted that an object oriented design facil-

itates extensibility of scientific codes. We have designed Pet-
Claw with maximal code reuse from PyClaw. Instead of in-
jecting parallel code throughout the original PyClaw source,
which makes it difficult to maintain and debug, PetClaw in-
herits most of its constructs from PyClaw and uses poly-
morphism to enable parallelism by subclassing. Thus both
the top- and bottom-level code components in PetClaw are
purely serial; a very thin parallel layer (about 300 lines of
code) ties them together.

PyClaw includes various superclasses to implement such
things as adaptive time step control, structured grid repre-
sentation, and time evolution. Most of these are used without
modification in PetClaw. As shown in figure 2, PetClaw uses
subclasses of a few PyClaw classes in order to implement the
necessary parallel functionality. The Grid class is responsible
for the problem description, including coordinates and aux-
iliary data like PDE coefficients that vary in space. It also
includes a numpy array that contains the current solution. In
the PCGrid subclass, this array is instead implemented as a
PETSc vector. The ClawSolver class is responsible for evolv-
ing the solution in time. PetClaw subclasses ClawSolver in
order to implement distributed boundary conditions, as well
as communication of the maximum CFL number.

pyclaw.evolve.clawpack.
ClawSolver

PetClawSolver

pyclaw.evolve.
clawpack.Claw

Solver1D

PetClawSolver1D

pyclaw.solution.
Grid

PCGrid

pyclaw.solution.
Dimension

PCDimension

0..1
0..3

Figure 2. A Simplified class diagram of PetClaw classes
along with their PyClaw superclasses

PETSc and petsc4py possess unified interfaces for both se-
rial and parallel code. Python language features allow us to
easily extend this functionality to the previous PyClaw code,
which was purely serial. Thus, to adapt a PyClaw application
to run in parallel using PetClaw, the only change needed is
modification of a few import statements, in order to substitute
the appropriate classes. For instance, in PyClaw the solution
is stored in a numpy array q that is an attribute of a grid ob-
ject. In PetClaw, we must use a PETSc class to implement q.
It is therefore necessary to call petsc4py functions whenever
q is accessed or modified. However, this bifurcation of inter-
faces is not very ’Pythonic’, so we implement the accesses
to q through a property function in Python. As a result, the
statements

grid.q= u

and
u= grid.q

work as intended from both PyClaw and PetClaw. In Py-
Claw, these statements merely get or set values in a numpy
array, whereas in PetClaw they request or set the contents of
a PETSc vectors related to a DA, and communicate the new
values of ghost cells (in the case of a set).

4.2. On-Core Performance Considerations
and Results

One of the potential drawbacks to using Python for
performance-driven applications is that it can be many times
slower than equivalent Fortran or C code. The most notable
reason for this is that Python is an interpreted language and
incorporates dynamic type checking, which severely lim-
its loop based algorithms without vectorization. Thus, tight
loops and function calls incur a significant penalty; however,
the performance penalty is small or nonexistent for logic. To
maintain good efficiency, we have incorporated Fortran based
Riemann solvers from Clawpack. In order to do this, we have
chosen f2py. Although it is not the only available wrapping

package for Python, it was chosen due to the current support
within the scientific computing community and its maturity
as a wrapper.

We validate our approach with a performance comparison
between the PetClaw code with python kernels (from Py-
Claw), the corresponding (Fortran-only) Clawpack code, and
the hybrid PetClaw approach on two examples. The first ex-
ample involves uniform advection, the second involves the
equations of elasticity in a heterogeneous medium. The ad-
vection test is quite exacting because it involves the cheap-
est imaginable computational kernels, thus exposing differ-
ences in overhead costs. The elasticity example is more real-
istic, since it uses a more expensive Riemann solver. It also
involves user-provided boundary conditions and other auxil-
iary problem-specific routines that are executed in Python at
every time step. The convenience of being able to write these
problem-specific functions in a high-level scripting language
is one of the main advantages of using Python, but it is a po-
tential performance pitfall.

Timing results are shown in Table 1. For both examples, the
PetClaw code with python kernels is 4-5 times slower than
Clawpack. By using wrapped Fortran kernels (from Claw-
pack), the hybrid PetClaw code achieves a speedup of about
3x, and is within a factor of two compared to the native For-
tran code, with most of the performance difference due to
object setup and deep array copies in the hybrid code. For
the more realistic elasticity test, PetClaw is only 42% slower
than hand-coded Fortran. Further analysis of the Python code
might expose opportunities to reduce unnecessary copies,
thus further improving the relative performance.

Clawpack PetClaw PetClaw
(Python) (Hybrid)

Advection 10.0 42.0 17.6
Elasticity 17.9 82.1 25.4

Table 1. Timing comparison between serial runs of Pet-
Claw, Clawpack, and the hybrid PetClaw code for advection
and elasticity. Both problems involve 10000 cells and about
10000 time steps. They were run on an Intel 3.06 GHz Intel
Core 2 Duo laptop. The results are displayed in seconds.

4.3. Distributed Memory Performance Con-
siderations and Results

PetClaw decomposes the serial computation by first parti-
tioning cells into disjoint sets. This is accomplished through
an abstract interface provided by the PETSc DA object, which
also provides the necessary layers of “ghost” cells which bor-
der each domain. Field values are associated with each cell,
and stored in PETSc Vec objects allocated automatically by
the DA.

The main computational loop, in constrast, runs over cell

faces. We redundantly compute flux contributions from faces
shared by multiple domains. At the close of each computa-
tion step, we update the values of ghost cells from the val-
ues on the owning process. This update is also accomplished
automatically by PETSc, and since it only involves nearest
neighbor communication, will be scalable.

In order to ensure stability, any explicit numerical method
for hyperbolic PDEs is subject to a constraint on the timestep
of the form

∆t
∆x

smax ≤C, (3)

where ∆t,∆x are the temporal and spatial step sizes, respec-
tively, smax is the largest wave speed occurring in the problem,
and C is a constant that depends on the numerical method (for
Clawpack in 1D, C = 1). The quantity appearing on the left
side of (3) is referred to as the CFL number. For nonlinear
problems, smax (and hence the CFL number) changes in time.
In order to maintain an efficient timestep and to avoid viola-
tion of (3), it is necessary to calculate the local wave speeds
in each cell at each time step, and perform a global reduction
to find smax.

We conduct our computational experiments on King Ab-
dullah University of Science and Technology’s flagship su-
percomputer, Shaheen. Shaheen is an IBM BlueGene/P solu-
tion, comprised of 16 racks. Each rack contains 1024 quad-
core PowerPC 450d compute nodes running at 850MHz.
Each compute node has 4GB RAM available to its four cores.

I/O on Shaheen is provided via quad-core PowerPC 450
I/O nodes (850MHz, 4GB RAM). One quarter of the machine
has 16 I/O nodes per rack, which provide a node density of 64
computational nodes (256 cores) per I/O node. The remaining
three quarters of the machine has 8 I/O nodes per rack, pro-
viding a node density of 128 computational nodes (512 cores)
per I/O node.

Shaheen’s data storage cluster serves a collection of high-
performance filesystems. It is comprised of 36 IBM System
x3650s driving DCS9900 Data Storage with 2 DS5100 EXP
storage drawers for metadata.

We determine the scalability of our approach with sev-
eral experiments on Shaheen. We begin with a simple model,
an advection problem with waves moving at constant speed.
Starting with a simulation of 4096 grid cells per process on
512 processes (mapped to 512 cores on 128 nodes using Vir-
tual Node mode), we double the number of cores while keep-
ing the work ratio (grid cells per core) constant by doubling
the total grid cells as well. We perform the first experiment
with no output. To gain an appreciation for the effects of out-
put on scalability, we perform the same weak scaling experi-
ment, this time aggressively ’checkpointing’ the solution data
every 1500 time steps. Finally, to gain an understanding of the
scaling behavior for a more comprehensive example, we per-
form a third scaling experiment modeling elastic wave propa-

512 1024 2048 4096 8192 16384
0

0.2

0.4

0.6

0.8

1

1.2

number of cores

pa
ra

lle
l e

ffi
ci

en
cy

advection output intensive, no global reductions
advection no output, no global reductions
elasticity no output, global reduction of wave speeds

Figure 3. Weak scalability of PetClaw code for simple ad-
vection and elastic wave propagation in heterogeneous media.

gation in a periodic medium (see section 5. for more details),
using the same number of grid cells per process and weak
scaling and normalization procedures to calculate parallel ef-
ficiency. For nonlinear applications, in which the maximum
stable timestep for the problem typically varies in time, Pet-
Claw employs adaptive time stepping. This requires global
communication of the CFL condition, which is a potential
performance bottleneck for large numbers of processors.

The results of all three experiments are plotted in Figure 3.
For the constant time step problem with no output, we see ex-
cellent parallel efficiency of 99% through 16,384 cores. How-
ever, the efficiency of the code when aggresively outputting
the solution falls below 80% beyond 8,192 cores of Shaheen.
Our effective cone of parallel efficiency when the CFL con-
dition does not need to be globally reduced lies between the
two lines and is largely dependent upon the relative speed of
the I/O subsystem as well as the frequency of solution output.
Introduction of global communication for adaptive time step-
ping causes a tolerable decrease in parallel efficiency, Pet-
Claw remains above 85% parallel efficiency through 16,384
cores for the elastic wave propagation through periodic media
problem.

Our software is the first production scripting language
based code to run with thousands of processes on Shaheen.
Consequently, we were the first users on the system to notice
serious delays when loading dynamic library objects on runs
with thousands of processes, with performance decreasing
linearly as a function of the number of processes. Although
the poor startup time is easily mitigated by long production
runs, we isolate the dynamic loading phase and highlight its
scalability apart from the solve phase in Figure 4. Poor dy-
namic library loading performance poses a hurdle for scal-
ability of short time runs until this issue has been resolved.

512 1024 2048 4096 8192 16384
0

0.2

0.4

0.6

0.8

1

1.2

number of cores

pa
ra

lle
l e

ffi
ci

en
cy

Figure 4. Catastrophic weak scaling of the dynamic loading
phase during Python job startup.

(a) Initial pulse (b) Separation into solitary waves

Figure 5. Evolution of a single pulse into a solitary wave
train.

5. APPLICATION TO ELASTIC WAVE
PROPAGATION IN PERIODIC MEDIA

In this section, we apply the PetClaw code to study a novel
wave phenomenon in periodic materials. LeVeque & Yong
[11] discovered that nonlinear waves traveling in a periodic
medium can exhibit solitary wave formation, as illustrated in
Figure 5.

One remarkable aspect of this is that the formation of
shocks appears to be entirely suppressed. However, this be-
havior depends on the particular properties of the background
medium. Since steep gradients appear in the solution, and
since numerical solvers necessarily smear shocks over at least
a few computational cells, direct inspection does not allow
any conclusions about shock formation.

The equations of nonlinear elasticity in a heterogeneous
medium can be written as

εt −ux = 0 (4)
ρ(x)ut −σ(ε,x)x = 0. (5)

Here ε(x, t) is the strain, σ(ε,x) the stress, u(x, t) the velocity,
and ρ(x) is the density. The total energy of the system

η(u,ε,x) =
1
2

ρ(x)u2 +
∫

ε

0
σ(s,x)ds. (6)

can be used as a proxy to study shock formation, since it is
conserved as long as the solution remains smooth, but de-
creases whenever shocks are present.

Following [11], we consider the elasticity equations (4) in
a medium composed of alternating layers of two materials:

(ρ(x),σ(ε,x)) =

{
(1,exp(ε)−1) for 0≤ x−bxc< 1/2
(Z,exp(Zε)−1) for 1/2≤ x−bxc< 1

(7)

Here Z plays the role of impedance for small-amplitude
waves.

Results in [8] indicate that the formation of solitary waves
and associated suppression of shock formation depends criti-
cally on the values of Z. There exists a relatively abrupt phase
transition as the impedance variation increases beyond a cer-
tain threshold. Below this threshold there is significant shock
formation; above the threshold there is very little. An impor-
tant theoretical question is whether shock formation is sup-
pressed completely beyond this threshold, or whether there
is still formation of weak shocks; the latter behavior was ob-
served in [16]. On the other hand, complete shock suppres-
sion would indicate the ability to transmit large-amplitude
signals over arbitrary distances without information loss.

Answering this question is computationally difficult, be-
cause it requires detection of extremely small losses of en-
ergy after long simulation times. This entails the use of very
fine grids. The domain must be large enough that, in a ho-
mogeneous medium, a shock wave forms and a substantial
fraction of the energy is dissipated as the shock wave crosses
the domain. This depends also on the shape and amplitude of
the initial pulse. These considerations require a domain that
is at least O(103) layers across. We choose units so that the
material layer period is 1 and the wave speeds appearing in
the problem are O(1). In order to reduce the numerical errors
to below 10−8, it turns out that a grid with O(104) cells per
material layer is needed. Hence the total number of grid cells
required is O(107); the number of time steps to be taken is of
the same magnitude. The largest runs here used over 7 million
cells and over 15 million timesteps.

On a 2.66 GHz Intel Xeon processor, a single timestep on
this grid takes 2 seconds. Hence the full simulation would
require approximately 0.95 years. Instead, this computation
was completed in about 15 hours on 8192 cores of Shaheen.
In order to understand this behavior more deeply we plan
to conduct detailed parameter studies, involving hundreds of
simulations. Clearly, this would be impossible on a serial ma-
chine.

In order to solve this system in PetClaw we use the f -
wave approximate Riemann solver for nonlinear elasticity de-
veloped in [10]. The total energy loss as a function of the
medium parameter Z is plotted in figure 6. These computa-
tions bound the energy loss due to shock formation for large Z
as no greater than 4.4×10−9. For comparison, a second curve
is plotted showing results obtained in serial on a workstation
in about the same amount of time. For those runs, the energy

Figure 6. Relative energy loss versus impedance contrast for
a nonlinear pulse in a periodic medium. For large enough
impedance Z, energy is conserved up to numerical errors.

loss due to numerical errors is about 10−4. By using the par-
allel PetClaw code, we have obtained results (on a grid 64
times finer) that are more accurate by 4 orders of magnitude
and demonstrate clearly the existence of a ”phase change”
with respect to shock formation. In the near future we plan
to incorporate higher order accurate methods into PetClaw,
which should enable us to reduce this bound to near machine
precision.

6. CONCLUSION
Since it builds on and maintains the interface of a widely-

used serial code, PetClaw can leverage the investment of the
existing community, and promises to have a strong impact
on applications involving hyperbolic PDEs. It employs a very
general framework that requires modification of only a sin-
gle component, the Riemann solver, in order to solve a wide
range of problems. On the other hand, it avoids the need for
new users to write Fortran code in most cases, since exist-
ing Fortran Riemann solvers can be employed in very many
applications, and the remaining code can be written in easily
in C or Python. In much the same way as PETSc, PetClaw
removes the need for a user to be familiar with MPI before
running large computations scalably on supercomputing plat-
forms. Moreover, inclusion of accurate, scalable hyperbolic
solves inside larger simulation codes now becomes quite easy
using Python scripting.

The next release of PetClaw will incorporate both 2D and
3D solvers. This will be relatively straightforward, since both
Clawpack and PETSc are already 3D-capable. In collabora-
tion with the Argonne Leadership Computing Facility, devel-
opment and incorporation of rapid dynamic loading strategies
for thousands of processes will enable the full Python applica-
tion to scale to the entire BG/Q machine. Inclusion of WENO

reconstruction and Runge-Kutta time integration, also lever-
aging existing Fortran code [7], will enable high order accu-
rate solvers.

In the longer term, PetClaw will include both limiting and
Riemann solves for many-core architectures, using CUDA
and OpenCL, to enable scaling on hybrid architectures. We
will incorporate PETSc’s efficient solvers for parabolic and
other stiff source terms to handle general balance laws. We
also plan to develop an adaptive mesh refinement capability
similar to that in AMRCLAW.

The interested reader may obtain code and in-
structions for reproducing the tests in this paper
from http://web.kaust.edu.sa/faculty/
davidketcheson/PetClaw_HPC_paper.html

REFERENCES
[1] Satish Balay, Kris Buschelman, Victor Eijkhout,

William D. Gropp, Dinesh Kaushik, Matthew G. Kne-
pley, Lois Curfman McInnes, Barry F. Smith, and Hong
Zhang. PETSc users manual. Technical Report ANL-
95/11 - Revision 3.0.0, Argonne National Laboratory,
2009.

[2] Satish Balay, Kris Buschelman, Victor Eijkhout,
William D. Gropp, Dinesh Kaushik, Matthew G. Kne-
pley, Lois Curfman McInnes, Barry F. Smith, and Hong
Zhang. PETSc Web page. http://www.mcs.anl.
gov/petsc, 2010.

[3] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro
Dalcin, Dag Sverre Seljebotn, and Kurt Smith. Cython:
The best of both worlds. Computing in Science and En-
gineering, September 2010.

[4] Lisandro Dalcin. petsc4py web page. http://
petsc4py.googlecode.com, 2010.

[5] J Enkovaara, C Rostgaard, J J Mortensen, J Chen,
M Dułak, L Ferrighi, J Gavnholt, C Glinsvad,
V Haikola, H A Hansen, H H Kristoffersen, M Kuisma,
A H Larsen, L Lehtovaara, M Ljungberg, O Lopez-
Acevedo, P G Moses, J Ojanen, T Olsen, V Petzold,
N A Romero, J Stausholm-Møller, M Strange, G A Trit-
saris, M Vanin, M Walter, B Hammer, H Häkkinen,
G K H Madsen, R M Nieminen, J K Nørskov, M Puska,
T T Rantala, J Schiøtz, K S Thygesen, and K W Ja-
cobsen. Electronic structure calculations with gpaw: a
real-space implementation of the projector augmented-
wave method. Journal of Physics: Condensed Matter,
22(25):253202, 2010.

[6] Michael Holst and Faisal Saied. Parallel performance of
some multigrid solvers for three-dimensional parabolic
equations. Technical report, UIUC, 1991.

[7] David I Ketcheson and Randall J LeVeque. WENO-
CLAW: A higher order wave propagation method. In
Hyperbolic Problems: Theory, Numerics, Applications:
Proceedings of the Eleventh International Conference
on Hyperbolic Problems, page 1123, Berlin, 2008.

[8] D.I. Ketcheson and R.J. LeVeque. Suppression of Shock
Formation by Periodic Materials. In preparation, 2010.

[9] Hans Petter Langtangen, editor. Python Scripting for
Computational Science, volume 3 of Texts in Computa-
tional Science and Engineering. Springer, 3rd edition,
2008.

[10] R J LeVeque. Finite-volume methods for non-linear
elasticity in heterogeneous media. IJNMF, 40:93–104,
2002.

[11] R J LeVeque and D H Yong. Solitary waves in layered
nonlinear media. SIAM Journal of Applied Mathemat-
ics, 63:1539–1560, 2003.

[12] Randall J LeVeque. Wave Propagation Algorithms
for Multidimensional Hyperbolic Systems. Journal of
Computational Physics, 131:327–353, 1997.

[13] R.J. LeVeque. Finite volume methods for hyperbolic
problems. Cambridge University Press, Cambridge,
2002.

[14] Travis E. Oliphant. A Guide to NumPy. Trelgol, 2006.

[15] M. Sala, W. Spotz, and M. Heroux. PyTrilinos: High-
performance distributed-memory solvers for Python.
ACM Transactions on Mathematical Software (TOMS),
34, March 2008.

[16] G. Simpson and M. I. Weinstein. Coherent Structures
and Carrier Shocks in the Nonlinear Periodic Maxwell
Equations. ArXiv e-prints, September 2010.

[17] M. A. Smith, C. Rabiti, D. Kaushik, B. Smith, W. S.
Yang, and G. Palmiotti. Fast reactor core simulations
using the unic code. In Proceedings of the International
Conference on the Physics of Reactors, Nuclear Power:
A Sustainable Resource, 2008.

[18] Cython Team. Cython: C–Extensions for Python, 2010.
http://www.cython.org.

[19] Ondřej Čertı́k. sympy web page. http://www.
sympy.org, 2010.

http://web.kaust.edu.sa/faculty/davidketcheson/PetClaw_HPC_paper.html
http://web.kaust.edu.sa/faculty/davidketcheson/PetClaw_HPC_paper.html
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://petsc4py.googlecode.com
http://petsc4py.googlecode.com
http://www.cython.org
http://www.sympy.org
http://www.sympy.org

	INTRODUCTION
	NUMERICAL WAVE PROPAGATION
	Hyperbolic Conservation Laws
	Computational Considerations
	Balance Laws

	SOFTWARE TOOLS
	Python and numpy
	Clawpack
	PyClaw
	PETSc
	petsc4py

	IMPLEMENTATION AND PERFORMANCE
	The PetClaw Code
	On-Core Performance Considerations and Results
	Distributed Memory Performance Considerations and Results

	APPLICATION TO ELASTIC WAVE PROPAGATION IN PERIODIC MEDIA
	CONCLUSION

