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Abstract. We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and
semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on
solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially non-
oscillatory reconstruction in space and strong stability preserving Runge-Kutta integration in time. The method can be extended
to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near
steady state. This well-balancing is achieved through the f -wave Riemann solver and a novel wave-slope WENO reconstruction
procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples,
including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium
solutions of balance laws.

1. Introduction. Many important physical phenomena are governed by hyperbolic systems of conser-
vation laws. In one space dimension the standard conservation law has the form

qt + f(q)x = 0, (1.1)

where the components of q ∈ R
m are conserved quantities and the components of f : Rm × R

m → R
m are

the corresponding fluxes. Very many numerical methods have been developed for the solution of (1.1); some
of the most successful are the high resolution Godunov-type methods based on the use of Riemann solvers
and nonlinear limiters. These and other methods are generally based on flux-differencing and make explicit
use of the flux function f .

Herein we also consider systems with spatially varying flux:

κ(x)qt + f(q, x)x = ψ(q, x), (1.2)

and spatially varying linear systems not in conservation form:

κ(x)qt +A(x)qx = ψ(q, x), (1.3)

as well as their two-dimensional extensions. Wave-propagation methods of up to second-order accuracy have
been developed for such systems in, e.g. [22, 20]. These methods are based on wave-propagation Riemann
solvers, which compute fluctuations, (i.e. traveling discontinuities) rather than fluxes and thus can be applied
to (1.2) or (1.3) just as easily as to the conservation law (1.1).

Second-order methods may often be the best choice in terms of a balance between computational cost
and desired resolution, especially for problems with solutions dominated by shocks or other discontinuities
with relatively simple structures between these discontinuities. For problems containing complicated smooth
solution structures, where the accurate resolution of small scales is required (e.g. simulation of compress-
ible turbulence, computational aeroacoustics, computational electromagnetism, turbulent combustion etc.),
schemes with higher order accuracy are desirable.

The purpose of this work is to present a numerical method that combines the advantages of wave-
propagation solvers with high order of accuracy. The basic discretization approach was presented already in
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[15]; here, we give a more detailed presentation and demonstrate the wide applicability of the method. The
new method combines the notions of wave propagation ([22, 24]) and the method of lines, and can in principle
be extended to arbitrarily high order accuracy by the use of high order accurate spatial reconstructions and
high order accurate ordinary differential equation (ODE) solvers. The implementation presented here is
based on the fifth-order accurate weighted essentially non-oscillatory (WENO) reconstruction and a fourth-
order accurate strong-stability-preserving Runge-Kutta (RK) scheme. We restrict our attention to problems
in one or two dimensions, although the method may be extended in a straightforward manner to higher
dimensions.

Although the method described here can be applied to classical hyperbolic systems (1.1), in that case
it is equivalent to a standard finite volume WENO flux-differencing scheme, as long as component-wise
reconstruction and a conservative wave propagation Riemann solver (such as a Roe or HLL solver) are used.
For this reason, we focus on problems in non-conservative form or with explicit spatial dependence in the
flux or source terms, which can be challenging for traditional discretizations.

Another approach to high order discretization of hyperbolic PDEs, referred to as the ADER method, has
been developed by Titarev & Toro [33] and subsequent authors. That approach uses the Cauchy-Kovalewski
procedure and has the advantage of leading to one-step time discretization. The method of lines approach
used in the present work seems more straightforward and allows manipulation of the method’s properties by
the use of different time integrators, but requires the evaluation of multiple stages per time step.

A similar class of conservative, well-balanced, and high-order accurate methods has been developed by
Castro, Gallardo, Pares, and their coauthors; see, e.g. [4]. Those methods also use WENO reconstruction
and Runge-Kutta time stepping in conjunction with Riemann solvers, and lead to a discretization with a
form similar to that presented here and in [15]. Those methods have recently been combined with the ADER
approach; see [9]. The present method differs in the approach to reconstruction and the kind of Riemann
solvers used. These differences result in some useful features: our method also handles systems (1.2)-(1.3)
with capacity function κ and it can make use of f -wave Riemann solvers [3] as well as wave-slope reconstruc-
tion and achieve high order convergence even for some problems with discontinuous coefficients. Finally, the
method can immediately be applied to very many interesting problems because the implementation is based
on Clawpack Riemann solvers, which are available for a great variety of hyperbolic systems. A potential
drawback of the current implementation of our method is that, for well-balancing, it relies on discretizing
the source term such that its effect is collocated at cell interfaces only.

The methods described in this paper are implemented in the software package SharpClaw, which is freely
available on the web at http://www.clawpack.org. SharpClaw employs the same interface that is used in
Clawpack [24] for problem specification and setup, as well as for the necessary Riemann solvers. This makes
it simple to apply SharpClaw to a problem that has been set up in Clawpack. These methods have also been
incorporated into PyClaw[17], which allows them to be run in parallel on large supercomputers.

The paper is organized as follows. In Section 2.2, we present Godunov’s method for linear hyperbolic
PDEs in wave propagation form [24]. This method is extended to high order in Section 2.3 by introducing a
high-order reconstruction based on cell averages. Generalization to spatially varying nonconservative linear
systems is presented in 2.4. Further extensions and details of the method are presented in the remainder of
Section 2. Numerical examples, including application to acoustics, elasticity, and shallow water waves,are
presented in Section 3.

2. Semi-discrete wave-propagation. The wave-propagation algorithm was first introduced by LeV-
eque [22] in 1997 in the framework of high resolution finite volume methods for solving hyperbolic systems
of equations. The scheme is conservative, second-order accurate in smooth regions, and captures shocks
without introducing spurious oscillations. In this section, we extend the wave-propagation algorithm to high
order accuracy through use of high order reconstruction and time marching. For simplicity, we focus on the
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Fig. 2.1. The wave propagation solution of the Riemann problem. The horizontal axis corresponds to space and the
vertical axis to time.

one dimensional scheme and then briefly describe the extension to two dimensions.

2.1. Riemann Problems and Notation. The notation for Riemann solutions used in this paper
comes primarily from [24], and is motivated by consideration of the linear hyperbolic system

qt +Aqx = 0. (2.1)

Here q ∈ R
m and A ∈ R

m×m. System (2.1) is said to be hyperbolic if A is diagonalizable with real eigenvalues;
we will henceforth assume this to be the case. Let sp and rp for 1 ≤ p ≤ m denote the eigenvalues and the
corresponding right eigenvectors of A with the eigenvalues ordered so that s1 ≤ s2 ≤ . . . ≤ sm.

Consider the Riemann problem consisting of (2.1) together with initial data

q(x, 0) =

{

ql x < 0
qr x > 0

. (2.2)

The solution for t > 0 is piecewise constant with m discontinuities, the pth one proportional to rp and
moving at speed sp. They can be obtained by decomposing the difference qr − ql in terms of the eigenvectors
rp:

qr − ql =
∑

p

αprp =
∑

p

Wp. (2.3)

We refer to the vectors Wp as waves. Each wave is a jump discontinuity along the ray x = spt. An example
solution is pictured in Figure 2.1 for m = 3. For brevity, we will sometimes refer to the Riemann problem
with initial left state ql and initial right state qr as the Riemann problem with initial states (ql, qr).

In a finite volume method, it is useful to define notation for the net effect of all left- or right-going waves:
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A−∆q ≡
m
∑

p=1

(sp)− Wp (2.4a)

A+∆q ≡

m
∑

p=1

(sp)
+
Wp. (2.4b)

Here and throughout, (x)± denotes the positive or negative part of x:

(x)− = min(x, 0) (x)+ = max(x, 0).

The symbols A±∆q, referred to as fluctuations, should be interpreted as single entities that represent the
net effect of all waves travelling to the right or left. The notation is motivated by the constant coefficient
linear system (2.1), in which case A±∆q = A±(qr − ql), where A− (respectively A+) is the matrix obtained
by setting all postive (respectively negative) eigenvalues of A to zero. See [22] or [24] for more details.

The notation for waves and fluctuations defined in (2.3) and (2.4) can also be used to describe numerical
solutions of Riemann problems for nonlinear systems if the numerical solver approximates the solution by a
series of propagating jump discontinuities, which is very often the case. Because the approximate Riemann
solution for a nonlinear system depends not only on the difference qr − ql but on the values of the states,
we will sometimes employ for clarity the notation Wp(ql, qr) to denote the pth wave in the solution of the
Riemann problem with initial states (ql, qr). In this case the vectors rp used for the decomposition (2.3)
are typically eigenvectors of an averaged Jacobian matrix Ā, and the sp are the corresponding wave speeds.
Then A±∆q = Ā±(qr−ql). But there are other possible ways to define the rp, sp and hence the fluctuations.
For example, using the HLL approximate Riemann solver [12] would always use only two waves regardless
of the size of the system. Or, for the case of spatially varying flux functions, the left-going waves may be
defined by eigenvectors of the Jacobian f ′(ql) while the right-going waves are defined by eigenvectors of
the Jacobian f ′(qr). One could combine these to create a matrix Ā having this set of eigenvectors and the
corresponding eigenvalues, but this is not required for implementation of the method. For these reasons we
use the more general notation A±∆q for the fluctuations defined by (2.4).

2.2. First-order Godunov’s method. Consider the constant-coefficient linear system in one dimen-
sion (2.1). Taking a finite volume approach, we define the cell averages (i.e. the solution variables)

Qi(t) =
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, t)dx,

where the index i and the quantity ∆x denote the cell index and the cell size, respectively. To solve the
linear system (2.1), we initially approximate the solution q(x, t) by these cell averages; that is, at t = t0 we
define the piecewise-constant function

q̃(x, t0) = Qi for x ∈ (xi− 1
2
, xi+ 1

2
). (2.5)

The linear system (2.1) with initial data q̃ consists locally of a series of Riemann problems, one at each
interface xi− 1

2
. The Riemann problem at xi− 1

2
consists of (2.1) with the piecewise constant initial data

q(x, 0) =

{

Qi−1 x < xi− 1
2

Qi x > xi− 1
2

.
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Fig. 2.2. Time evolution of the reconstructed solution q̃ in cell i.

As discussed above, the solution of the Riemann problem is expressed as a set of waves obtained by decom-
posing the jump in Q in terms of the eigenvectors of A:

Qi −Qi−1 =
∑

p

αp

i− 1
2

rp
i− 1

2

=
∑

p

Wp(Qi−1, Qi). (2.6)

Let q̃(x, t0 +∆t) denote the exact evolution of q̃ after a time increment ∆t. If we take ∆t small enough
that the waves from adjacent interfaces do not pass through more than one cell, then we can integrate (2.1)
over [xi− 1

2
, xi+ 1

2
]× [0,∆t] and divide by ∆x to obtain

Qi(t0 +∆t)−Qi(t0) = −
1

∆x

∫ x
i+1

2

x
i− 1

2

A q̃x(x, t0 +∆t)dx. (2.7)

Here q̃x should be understood in the sense of distributions.

We can split the integral above into three parts, representing the Riemann fans from the two interfaces,
and the remaining piece:

∫ x
i+1

2

x
i− 1

2

Aq̃xdx =

∫ x
i− 1

2

+sR∆t

x
i− 1

2

Aq̃xdx+

∫ x
i+1

2

x
i+1

2

+sL∆t

Aq̃xdx+

∫ x
i+1

2

+sL∆t

x
i− 1

2

+sR∆t

Aq̃xdx. (2.8)

The relevant regions are depicted in Figure 2.2. Here we have defined sL = min(s1
i+ 1

2

, 0) and sR =

max(sm
i− 1

2

, 0). The third integral in (2.8) vanishes because q̃(x,∆t) is constant outside the Riemann fans, by

5



the definition (2.5). Hence (2.8) reduces to

∫ x
i+1

2

x
i− 1

2

Aq̃xdx = ∆t

m
∑

p=1

(

sp
i− 1

2

)+

Wp

i− 1
2

+∆t

m
∑

p=1

(

sp
i+ 1

2

)−

Wp

i+ 1
2

(2.9a)

= ∆t
(

A+∆Qi− 1
2
+A−∆Qi+ 1

2

)

, (2.9b)

where the fluctuations A−∆Qi+ 1
2

and A+∆Qi− 1
2

are defined by

A−∆Qi+ 1
2
≡

m
∑

p=1

(

sp
i+ 1

2

)−

Wp

i+ 1
2

, Wp

i+ 1
2

≡ Wp(Qi, Qi+1) (2.10a)

A+∆Qi− 1
2
≡

m
∑

p=1

(

sp
i− 1

2

)+

Wp

i− 1
2

, Wp

i− 1
2

≡ Wp(Qi−1, Qi). (2.10b)

Note again that the fluctuations A+∆Qi− 1
2

and A−∆Qi+ 1
2

are motivated by the idea of a matrix-vector
product but should be interpreted as single entities that represent the net effect of all waves travelling to the
right or left. The upper-case Q in the fluctuations is meant to emphasize that they are based on differences
of cell averages. For instance, the fluctuation A+∆Qi− 1

2
corresponds to the effect of right-going waves from

the Riemann problem with initial states (Qi−1, Qi).
Substituting (2.9b) into (2.7), we obtain the scheme

Qn+1
i −Qn

i = −
∆t

∆x

(

A+∆Qi− 1
2
+A−∆Qi+ 1

2

)

.

Dividing by ∆t and taking the limit as ∆t approaches zero, we obtain the semi-discrete wave-propagation
form of the (first-order) Godunov’s scheme

∂Qi

∂t
= −

1

∆x

(

A+∆Qi− 1
2
+A−∆Qi+ 1

2

)

. (2.11)

Equation (2.11) constitutes a linear system of ordinary differential equations (ODEs) that may be integrated,
for instance, with a Runge-Kutta method. It is clear from the derivation that this scheme reduces to the
corresponding flux-differencing scheme when applied to systems written in conservation form, e.g. system
(1.2).

2.3. Extension to higher order. The method of the previous section is only first-order accurate in
space. In order to improve the spatial accuracy, we replace the piecewise-constant approximation (2.5) by a
piecewise-polynomial approximation that is accurate to order p in regions where the solution is smooth:

q̃(x, t0) = q̃i(x) for x ∈ (xi− 1
2
, xi+ 1

2
), (2.12)

where

q̃i(x) = q(x, t0) +O(∆xp+1).

Integration of Aq̃x over [xi− 1
2
, xi+ 1

2
] again yields (2.8), but now the third integral is non-zero in general,

since q̃ is not constant outside the Riemann fans. Define

qR
i− 1

2

≡ lim
x→x+

i− 1
2

q̃i(x) qL
i+ 1

2

≡ lim
x→x−

i+1
2

q̃i(x), (2.13)
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where superscripts L and R refer respectively to the left and the right state of the interface considered.
Then in place of (2.9), we now obtain (neglecting terms of order O(∆t2))

∫ x
i+1

2

x
i− 1

2

Aq̃xdx ≈ ∆t

m
∑

p=1

(

sp
i− 1

2

)+

Wp

i− 1
2

+∆t

m
∑

p=1

(

sp
i+ 1

2

)−

Wp

i+ 1
2

+

∫ x
i+1

2

+sL∆t

x
i− 1

2

+sR∆t

Aq̃xdx (2.14a)

= ∆t
(

A+∆qi− 1
2
+A−∆qi+ 1

2

)

+A(qL
i+ 1

2

− qR
i− 1

2

). (2.14b)

The resulting fully-discrete scheme is thus

Qn+1
i −Qn

i = −
∆t

∆x

(

A+∆qi− 1
2
+A−∆qi+ 1

2
+A(qL

i+ 1
2

− qR
i− 1

2

)
)

.

We use the notation A±∆q instead of A±∆Q because the states in the Riemann problems are not the cell
averages, but rather the reconstructed interface values. In other words, the fluctuations at xi− 1

2
are defined

by

A±∆qi− 1
2
=

m
∑

p=1

(

sp(qL
i− 1

2

, qR
i− 1

2

)
)±

Wp(qL
i− 1

2

, qR
i− 1

2

).

For instance, the fluctuation A+∆qi− 1
2

corresponds to the effect of right-going waves from the Riemann

problem with initial states (qL
i− 1

2

, qR
i− 1

2

). Moreover, we can view the term A(qL
i+ 1

2

− qR
i− 1

2

) as the sum of both

the left- and right-going fluctuations resulting from a Riemann problem with initial states (qR
i− 1

2

, qL
i+ 1

2

). It

is natural to denote this term, which we refer to as a total fluctuation, by A∆qi:

A∆qi =

m
∑

p=1

(

sp(qR
i− 1

2

, qL
i+ 1

2

)
)±

Wp(qR
i− 1

2

, qL
i+ 1

2

).

Dividing by ∆t and taking the limit as ∆t approaches zero, we obtain the semi-discrete scheme

∂Qi

∂t
= −

1

∆x

(

A+∆qi− 1
2
+A−∆qi+ 1

2
+A∆qi

)

. (2.15)

2.4. Spatially varying linear systems. Next we generalize the method to solve one-dimensional
spatially varying nonconservative linear systems:

qt +A(x)qx = 0. (2.16)

We again assume that A is a constant function of x within each cell, so we can write A(x) = Ai(q). In the
special case that A is the Jacobian matrix of some function f , (2.16) corresponds to the conservation law
(1.1). Our method can be applied to the general system (2.16) as long as the physically meaningful solution
to the Riemann problem can be approximated. This may be nontrivial for a nonconservative nonlinear
problem, as discussed in many papers such as [5, 6, 7, 8, 19]. We do not go into this here, but assume
that our numerical approach is to be applied to a problem for which the user has a means of solving the
Riemann problem in terms of discontinuities (waves) Wp

i− 1
2

propagating at speeds sp
i− 1

2

, and hence can define

fluctuations. This is the case for any linearized Riemann solver, and often for other approximate solvers.
Then the scheme is given by

∂Qi

∂t
= −

1

∆x



A+∆qi− 1
2
+A−∆qi+ 1

2
+

∫ x
i+1

2

x
i− 1

2

Ai q̃xdx



 . (2.17)
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In general, the integral in (2.17) must be evaluated by quadrature; however, for the conservative system
(1.1), the integral can be evaluated exactly, and is given by

∫ x
i+1

2

x
i− 1

2

Ai q̃xdx = f(qL
i+ 1

2

)− f(qR
i− 1

2

). (2.18)

If the fluctuations are computed using a Roe solver or some other conservative wave-propagation Riemann
solver, then the flux difference appearing in (2.18) is equal to the sum of fluctuations from a fictitious
“internal” Riemann problem for the current cell i, just as in the linear case above:

f(qL
i+ 1

2

)− f(qR
i− 1

2

) = A+∆qi +A−∆qi = A∆qi. (2.19)

Specifically, the fluctuations A±∆qi are those resulting from the Riemann problem with initial states
(qR

i− 1
2

, qL
i+ 1

2

). Then we can write (2.17) also as

∂Qi

∂t
= −

1

∆x

(

A−∆qi+ 1
2
+A+∆qi− 1

2
+A∆qi

)

. (2.20)

Note that, for the conservative system (1.1), if a Roe solver or an f -wave solver (see Section 2.6) is used,
then the fluctuations are equal to the flux differences

A−∆qi− 1
2
= f̂i− 1

2
− f(qL

i− 1
2

) (2.21)

A+∆qi− 1
2
= f(qR

i− 1
2

)− f̂i− 1
2
, (2.22)

where f̂i− 1
2

is the numerical flux at xi− 1
2
. Thus (2.20) is in that case equivalent to the traditional flux-

differencing method

∂Qi

∂t
= −

1

∆x

(

f̂i+ 1
2
− f̂i− 1

2

)

. (2.23)

In particular, the scheme is conservative in this case.

2.5. Capacity-form differencing. In many applications the system of conservation laws takes the
form

κ(x)qt + f(q)x = 0, (2.24)

in one space dimension, or

κ(x, y)qt + f(q)x + g(q)y = 0, (2.25)

in two dimensions, where κ is a given function of space and is usually indicated as capacity function (see
[22]). Systems like (2.24) and (2.25) arise naturally in the derivation of a conservation law, where the flux
of a quantity is naturally defined in terms of one variable q, whereas it is a different quantity κq that is
conserved. For instance, for the flow in a porous media, κ would be the porosity. Note that a capacity
function can also appear in systems that are not in conservation form, e.g. the quasilinear system (1.3).

Several approaches can be used to reduce such a system to a more familiar conservation law. One natural
approach is the capacity-form differencing [22],

∂Qi

∂t
= −

1

κi∆x

(

A+∆qi− 1
2
+A−∆qi+ 1

2
+A∆qi

)

, (2.26)

where κi is the capacity of the ith cell. This is a simple extension of (2.15) or (2.20) which ensures that
∑

κiQi is conserved (except possibly at the boundaries) and yet allows the Riemann solution to be computed
based on q as in the case κ = 1.
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2.6. f-wave Riemann solvers and well-balancing. For application to conservation laws, it is desir-
able to ensure that the wave-propagation discretization is conservative. This can easily be accomplished by
using an f -wave Riemann solver [3]. Use of f -wave solvers is also useful for problems with spatially varying
flux function, as well as problems involving balance laws near steady state. Further uses of the f -wave
approach can be found in [1, 2, 18, 28, 32].

The idea of the f -wave splitting for (1.1) is to decompose the flux difference f(qr) − f(ql) into waves
rather than the q-difference used in (2.6), i.e. we decompose the flux difference as a linear combination of
the right eigenvectors rp of some Jacobian:

f(qr)− f(ql) =
∑

p

βprp =
∑

p

Zp(ql, qr). (2.27)

The fluctuations are then defined as

A−∆q ≡
∑

p:sp<0

Zp(ql, qr) A+∆q ≡
∑

p:sp>0

Zp(ql, qr)

Note that the total fluctuation in cell i is given simply by

A∆qi = f
(

qL
i+ 1

2

)

− f
(

qR
i− 1

2

)

.

An advantage of particular interest is the possibility to include source terms directly into the f -wave
decomposition. In fact, for balance laws that include non-hyperbolic terms,

qt + f(q)x = ψ(q, x),

one can easily extend this algorithm by first discretizing the source term to obtain values Ψi− 1
2

at the cell

interfaces and then compute the waves Zp

i− 1
2

by splitting

f(qr)− f(ql)−∆xΨ(ql, qr, x) =
∑

p

βprp =
∑

p

Zp(ql, qr). (2.28)

Here Ψ(ql, qr, x) is some suitable average of ψ(q, x), between the neighboring states. In Bale et al. [3], it has
been shown that for the second-order FV wave-propagation scheme implemented in Clawpack, the f -wave
approach is very useful for handling source terms, especially in cases where the solution is close to a steady
state because it leads to a well-balanced scheme. However, for our high order wave-propagation scheme,
application of the f -wave algorithm with component-wise or characteristic-wise reconstruction [29] (which
take no account of the source term) does not lead to a method that is well-balanced, even though the source
term is accounted for in the Riemann solves which compute A±∆qi− 1

2
. This is because with the aforementined

WENO approaches the reconstructed solution within each cell is not constant (i.e. qL
i+ 1

2

6= qR
i− 1

2

) and

A∆qi 6= 0.
In this work, we consider an extension of the f -wave well-balancing technique that is compatible with

our higher order scheme. The extension is useful for problems in which the source term vanishes over the
interior of each cell (i.e., its effect is concentrated at cell interfaces). This is the case, for instance, when
considering the shallow water equations with piecewise-constant bathymetry (see Section 3.3.2). This well-
balancing technique uses the f -wave Riemann solver in combination with a f -wave-slope reconstruction (see
Section 2.7.3). With this approach, the contribution of the source term is directly included in the Riemann
solve at the cell’s interface, i.e. (2.28). The reconstruction methods considered in this work are presented in
the next section.
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2.7. Reconstruction. The reconstruction (2.12) should be performed in a manner that yields high
order accuracy but avoids spurious oscillations near discontinuities. For this purpose, we use weighted
essentially non-oscillatory (WENO) reconstruction [31]. The spatial accuracy of the method will in general
be equal to that of the reconstruction. In the present work we employ fifth-order WENO reconstruction.

2.7.1. Scalar WENO Reconstruction. WENO reconstruction formulas are typically written in
terms of the divided differences ∆Qi± 1

2
/∆x. It is possible to rewrite them in terms of the difference ra-

tios

θi− 1
2
,j =

∆Qi− 1
2
+j

∆Qi− 1
2

. (2.29)

as long as ∆Qi− 1
2
6= 0. Then the reconstructed interface values in cell i are given by

qR
i− 1

2

= Qi − φ(θi− 1
2
,2−k, . . . , θi− 1

2
,k−1)∆Qi− 1

2
(2.30a)

qL
i+ 1

2

= Qi + φ(θi+ 1
2
,1−k, . . . , θi+ 1

2
,k−2)∆Qi− 1

2
, (2.30b)

where φ is a particular nonlinear function that we will not write out here. The usefulness of (2.30) is that
it allows WENO reconstruction to be applied to waves directly by redefining θ, as we do below. In the case
that ∆Qi− 1

2
≈ 0 (to near machine precision), the value of φ is set to zero.

For systems of equations, the simplest approach to reconstruction is component-wise reconstruction,
which consists of applying the scalar reconstruction approach (2.29)-(2.30) to each element of q. A more so-
phisticated approach is characteristic-wise reconstruction, in which an eigendecomposition of q is performed,
followed by reconstruction of each eigencomponent. For problems with spatially-varying coefficients, even
the characteristic-wise reconstruction may not be satisfying, since it involves comparing coefficients of eigen-
vectors whose direction in state space varies from one cell to the next. In Clawpack, an alternative kind of
TVD limiting known as wave limiting has been implemented and shown to be effective for such problems.

2.7.2. Wave-slope reconstruction. In order to implement a wave-type WENO limiter, we first solve
a Riemann problem at each interface xi− 1

2
, using the adjacent cell average values Qi−1, Qi as left and right

states. This results in a set of waves Wp

i− 1
2

, which are used solely for the purpose of reconstruction. This

reconstruction is performed by replacing (2.29) by

θp
i− 1

2
,j
=

Wp

i− 1
2
+j

· Wp

i− 1
2

Wp

i− 1
2

· Wp

i− 1
2

(2.31)

and replacing (2.30) by

qL
i− 1

2

= Qi−1 +
∑

p

φ(θp
i+ 1

2
,1−k

, . . . , θp
i+ 1

2
,k−2

)Wp

i− 1
2

(2.32a)

qR
i− 1

2

= Qi −
∑

p

φ(θp
i− 1

2
,2−k

, . . . , θp
i− 1

2
,k−1

)Wp

i− 1
2

, (2.32b)

This approach takes into account the smoothness of the pth characteristic component of the solution by
using the information arising from the k-cell stencils. It is intended to be similar to that used in Clawpack
[24] and can be conveniently implemented using the same Riemann solvers supplied with Clawpack.
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2.7.3. f-wave-slope reconstruction. Wave-slope reconstruction can also be performed using an f -
wave Riemann solver. This is useful for computing near-equilibrium solutions of balance laws. The procedure
is identical to that above, except that the Riemann problem is solved with the f -wave Riemann solver at each
interface xi− 1

2
, using the adjacent cell average values Qi−1, Qi as left and right states. Since the resulting

f -waves have the form of a q increment multiplied by the wave speed [3], the waves Z are normalized by the
corresponding wave speed before being used for reconstruction:

Wp

i− 1
2

= Zp

i− 1
2

/sp
i− 1

2

. (2.33)

In this paper we assumed that the original hyperbolic system has no zero eigenvalues (sp 6= 0) or eigenvalues
that change sign between grid cells (i.e. the resonant case). The reconstruction procedure (2.31)-(2.32) is
then applied to the waves computed by (2.33).

For systems with source terms that are at a steady state, assuming that (2.28) holds, results in Zp = 0
for all waves. Therefore, the f -wave-slope reconstruction will yield to a constant reconstructed function in
regions where source terms and hyperbolic terms are balanced. Then all fluctuations computed in the update
step will vanish, so the steady state will be preserved exactly.

2.8. Time integration. The semi-discrete scheme can be integrated in time using any initial-value
ODE solver. Herein we use the ten-stage fourth-order strong-stability-preserving Runge-Kutta scheme of
[13]. This method has a large stability region and a large SSP coefficient, allowing use of a relatively large
CFL number in practical computations. In all numerical examples of the next section, a CFL number of
2.45 is used.

To summarize, the full semi-discrete algorithm used in each Runge-Kutta stage is as follows.
0. (only if using wave-slope reconstruction) Solve the Riemann problem at each interface xi− 1

2
using

the adjacent cell average values Qi−1, Qi as left and right states.
1. Compute the reconstructed piecewise function q̃, and in particular the states qR

i− 1
2

, qL
i+ 1

2

in each cell,

using component-wise, characteristic-wise, or wave-slope reconstruction.
2. At each interface xi− 1

2
, compute the fluctuations A+∆qi− 1

2
and A−∆qi− 1

2
by solving the Riemann

problem with initial states (qL
i− 1

2

, qR
i− 1

2

).

3. Over each cell, compute the integral
∫

A q̃xdx. For conservative systems this is just the total fluctu-
ation A∆qi.

4. Compute ∂Q/∂t using the semi-discrete scheme (2.17).
Note again that, for conservative systems, the quadrature in step 3 requires nothing more than evaluating
and differencing the fluxes.

2.9. Extension to Two Dimensions. In this section, we extend the numerical wave propagation
method to two dimensions using a simple dimension-by-dimension approach. The method is applicable to
systems of the form

qt +A(x, y)qx +B(x, y)qy = 0 (2.34)

on uniform Cartesian grids.
The 2D analog of the semi-discrete scheme (2.20) is

∂Qij

∂t
= −

1

∆x∆y

(

A−∆qi+ 1
2
,j +A+∆qi− 1

2
,j +A∆qi,j

+B−∆qi,j+ 1
2
+ B+∆qi,j− 1

2
+ B∆qi,j

)

.

(2.35)
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For the method to be high order accurate, the fluctuation terms like A−∆qi+ 1
2
,j should involve integrals over

cell edges, while the total fluctuation terms like A∆qi,j should involve integrals over cell areas. This can be
achieved by forming a genuinely multidimensional reconstruction of q and using, e.g., Gauss quadrature. An
implementation following this approach exists in the SharpClaw software. For nonlinear problems containing
shocks, the genuinely multidimensional reconstruction has been found to be inefficient (at least for some
simple test problems), as it typically yields only a small improvement in accuracy over the dimension-
by-dimension scheme given below (which formally only second-order accurate), but has a much greater
computational cost on the same mesh. Similar observations have been reported in Zhang et al. [34], where
both approaches have been throughly tested and compared for linear and nonlinear systems. For problems
with shocks, at least for the simple test problems presented, the two schemes give comparable resolution on
the same meshes, despite their difference in formal order of accuracy.

We now describe the dimension-by-dimension scheme for a single Runge-Kutta stage. We first reconstruct
piecewise-polynomial functions q̃j(x) along each row of the grid and q̃i(y) along each column, by applying a
1D reconstruction procedure to each slice. We thus obtain reconstructed values

q̃Rj (xi− 1
2
) ≈ q(xi− 1

2
, yj) (2.36a)

q̃Lj (xi+ 1
2
) ≈ q(xi+ 1

2
, yj) (2.36b)

q̃Ri (yi− 1
2
) ≈ q(xi, yi− 1

2
) (2.36c)

q̃Li (yi+ 1
2
) ≈ q(xi, yi+ 1

2
) (2.36d)

for each cell i, j. The fluctuation terms in (2.35) are determined by solving Riemann problems between the
appropriate reconstructed values; for instance B−∆qi,j+ 1

2
is determined by solving a Riemann problem in

the y-direction with initial states (qL
i,j+ 1

2

, qR
i,j+ 1

2

). In the case of conservative systems or piecewise-constant

coefficients, the total fluctuation terms A∆qi,j and B∆qi,j can be similarly determined by summing the left-
and right-going fluctuations of an appropriate Riemann problem. Thus, for instance, B∆qi,j is determined
by solving Riemann problem in the y-direction with initial states (qR

i,j− 1
2

, qL
i,j+ 1

2

).

3. Numerical applications. In this section we present results of numerical tests using the wave
propagation methods just described. The examples included are chosen to emphasize the advantages of the
wave propagation approach. We make some comparisons with the well-known second-order wave propagation
code Clawpack [25, 24].

3.1. Acoustics. In this section, the high-order wave propagation algorithm is applied to the 1D equa-
tions of linear acoustics in piecewise homogeneous materials:

pt +K(x, y)(ux + vy) = 0 (3.1a)

ut +
1

ρ(x, y)
px = 0 (3.1b)

vt +
1

ρ(x, y)
py = 0. (3.1c)

Here p is the pressure and u, v are the x- and y-velocities, respectively. The coefficients ρ and K, which vary
in space, are the density and bulk modulus of the medium. We will also refer to the sound speed c =

√

K/ρ.
Notice that in general since ρ varies in space, the last two equations above are not in conservation form. This
test case demonstrates that the proposed approach is able to solve hyperbolic system of equations written
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in nonconservative form. Of course, this system can be written in conservative form as follows:

ǫt − (ux + vy) = 0 (3.2a)

ρ(x, y)ut − (K(x, y)ǫ)x = 0 (3.2b)

ρ(x, y)vt − (K(x, y)ǫ)y = 0, (3.2c)

Where ǫ = −p/K is the strain. As we will see, the latter form may be advantageous in terms of the accuracy
that can be obtained.

The grid is chosen so that the material is homogeneous in each computational cell, and an exact Riemann
solver is used at each interface; for details of this solver see e.g. [11].

3.1.1. One-dimensional acoustics. We first consider one-dimensional acoustic waves in a piecewise-
constant medium with a single interface. Namely, we solve (3.1) on the interval x ∈ [−10, 10] with

(ρ, c) =

{

(ρl, cl) x < 0
(ρr, cr) x > 0

We measure the convergence rate of the solution in order to verify the order of accuracy for smooth solutions.
The initial condition is a compact, six-times differentiable purely right-moving pulse:

p(x, 0) =
((x− x0)− a)6((x − x0) + a)6

a12
ξ(x − x0)

u(x, 0) = p(x, 0)/Z(x)

where

ξ(x− x0) =

{

0 for |x− x0| > a)
1 for |x− x0| ≤ a.

with x0 = −4 and a = 1, and Z(x) =
√

K(x)ρ(x). This condition was chosen to be sufficiently smooth to
demonstrate the design order of the scheme and to give a solution that is identically zero at the material
interface at the initial and final times.

Table 3.1 shows L1 errors and convergence rates for propagation in a homogeneous medium with ρl =
cl = ρr = cr = 1. Here we use componentwise reconstruction. Specifically, we compute

EL1
= ∆x

∑

i

|Qi − Q̄i| (3.3)

where Q̄i is a highly accurate solution cell average computed by characteristics or by using a very fine
grid. For the acoustics problems in this section, Q̄ is computed using characteristics and adaptive Gauss
quadrature. Table 3.1 indicates that in each case, the order of convergence is approximately equal to the
design order of the discretization.

To test the accuracy in the presence of discontinuous coefficients we take

ρl = cl = 1 ρr = 4 cr = 1/2,

with an impedance ratio of Zr/Zl = 2. As was noted in [3], this system can also be solved in the conservative
form (3.2) using the f -wave approach. We include results of this approach, where we have also performed
characteristic-wise rather than component-wise reconstruction. Results are shown in Table 3.2. In this case
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Table 3.1
Errors for homogeneous acoustics test

SharpClaw Clawpack
mx Error Order Error Order
200 3.60e-02 4.10e-02
400 3.65e-03 3.30 1.30e-02 1.66
800 1.85e-04 4.31 3.61e-03 1.85
1600 7.35e-06 4.65 8.94e-04 2.01

all schemes exhibit a convergence rate below the formal order, even though the initial and final solutions are
smooth. To investigate this further, we repeat the same test with a wider pulse by taking a = 4. Results are
shown in Table 3.3.

For the latter test, we observe a convergence rate of approximately two for SharpClaw, one for Claw-
pack, and five for SharpClaw using the f -wave approach and characteristic-wise reconstruction. The last
convergence rate is remarkable, considering that the solution is not differentiable when it passes through
the material interface. Further investigation of the accuracy of this approach for more complicated prob-
lems with discontinuous coefficients is ongoing. In tests not shown here, Clawpack achieves approximately
second-order accuracy when used with an f -wave Riemann solver for this problem.

Table 3.2
Errors for acoustics interface with narrow pulse

SharpClaw SharpClaw f -wave Clawpack
mx Error Order Error Order Error Order
200 2.10e-01 9.50e-02 1.98e-01
400 5.98e-02 1.81 1.42e-02 2.74 7.26e-02 1.45
800 1.25e-02 2.26 1.42 e-03 3.32 2.21e-02 1.71
1600 1.17e-03 3.42 1.20e-04 3.56 7.86e-03 1.49

Table 3.3
L1 Errors for acoustics interface problem with wide pulse (a=4)

SharpClaw SharpClaw f -wave Clawpack
mx Error Order Error Order Error Order
200 9.67e-03 5.01e-03 5.23e-02
400 2.01e-03 2.27 4.63e-04 3.44 2.32e-02 1.17
800 4.89e-04 2.04 2.51e-05 4.36 1.09e-02 1.09
1600 1.22e-04 2.00 6.49e-07 5.12 5.26e-03 1.05

3.1.2. A Two-dimensional sonic crystal. In this section we model sound propagation in a sonic
crystal. A sonic crystal is a periodic structure composed of materials with different sounds speeds and
impedances. The periodic inhomogeneity can give rise to bandgaps – frequency bands that are completely
reflected by the crystal. This phenomenon is widely utilized in photonics, but its significance for acoustics has
only recently been considered. Photonic crystals can be analyzed quite accurately using analytic techniques,
since they are essentially infinite size structures relative to the wavelength of the waves of interest. In
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Fig. 3.1. Pressure in the sonic crystal for a long wavelength plane wave incident from the left.
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Fig. 3.2. Pressure in the sonic crystal for a long wavelength plane wave incident from the left.

contrast, sonic crystals are typically only a few wavelengths in size, so that the effects of their finite size
cannot be neglected. For more information on sonic crystals, see for instance the review paper [27].

We consider a square array of square rods in air with a plane wave disturbance incident parallel to one
of the axes of symmetry. The array is infinitely wide but only eight periods deep. The lattice spacing is 10
cm and the rods have a cross-sectional side length of 4 cm, so that the filling fraction is 0.16. This crystal is
similar to one studied in [30], and it is expected that sound waves in the 1200-1800 Hz range will experience
severe attenuation in passing through it, while longer wavelengths will not be significantly attenuated.

A numerical instability very similar to that observed in 1D simulations in [10, 11] was observed when the
standard Clawpack method was applied to this problem. The fifth-order WENO method with characteristic-
wise limiting showed no such instability.

Figure 3.1 shows a snapshot of the RMS pressure distribution in space for a plane wave with k = 15
incident from the left. The RMS (root mean square) pressure is computed as follows:

pRMS(x, y) =

√

1

T

∫ t+T

t

p2(x, y, t)dt. (3.4)

This wave has a frequency of about 800 Hz, well below the partial band gap. As expected, the wave passes
through the crystal without significant attenuation. In Figure 3.2, the pressure is plotted along a slice in the
x-direction approximately midway between rows of rods.

Figure 3.3 shows a snapshot of the RMS pressure distribution in space for an incident plane wave with
with frequency 1600 Hz, inside the partial bandgap. Notice that the wave is almost entirely reflected,
resulting in a standing wave in front of the crystal. Figure 3.4 shows the RMS pressure along a slice in the
x-direction.

3.2. Nonlinear Elasticity in a Spatially Varying Medium. In this section we consider a more dif-
ficult test involving nonlinear wave propagation and many material interfaces. This problem was considered

15



Fig. 3.3. Snapshot of RMS pressure distribution in space in the sonic crystal for a plane wave incident from the left.
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Fig. 3.4. Snapshot of RMS pressure distribution in space in the sonic crystal along a slice.

previously in [20] and studied extensively in [21]. Solitary waves were observed to arise from the interaction
of nonlinearity and an effective dispersion due to material interfaces in layered media.

Elastic compression waves in one dimension are governed by the equations

ǫt(x, t)− ux(x, t) = 0 (3.5a)

(ρ(x)u(x, t))t − σ(ǫ(x, t), x)x = 0. (3.5b)

where ǫ is the strain, u the velocity, ρ the density, and σ the stress. This is a conservation law of the form
(1.1), with

q(x, t) =

(

ǫ
ρ(x)u

)

f(q, x) =

(

−u
−σ(ǫ, x)

)

.

Note that the density and the stress-strain relationship vary in x. The Jacobian of the flux function is

f ′(q) =

(

0 −1/ρ(x)
−σǫ(ǫ, x) 0

)

.

In the case of the linear stress-strain relation σ(x) = K(x)ǫ(x), (3.5) is equivalent to the one-dimensional
form of the acoustics equations considered in the previous section.

We consider the piecewise constant medium studied in [20, 21]:

(ρ(x),K(x)) =

{

(1, 1) if j < x < (j + 1

2
) for some integer j

(4, 4) otherwise,
(3.6)

with exponential stress-strain relation

σ(ǫ, x) = exp(K(x)ǫ)− 1. (3.7)
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Fig. 3.5. Comparison of Clawpack (red circles) and SharpClaw (blue squares) solution of the stegoton problem using 24
cells per layer. For clarity, only every third solution point is plotted. The black line represents a very highly resolved solution.

The initial condition is uniformly zero, and the boundary condition at the left generates a half-cosine pulse.
We solve this problem using the f -wave solver developed in [20]. Figure 3.5 shows a comparison of

results using Clawpack and SharpClaw on this problem, with 24 cells per layer. The SharpClaw results are
significantly more accurate.

Solutions of (3.5) are time-reversible in the absence of shocks. As discussed in [14, 16], the effective
dispersion induced by material inhomogeneities suppresses the formation of shocks, for small amplitude
initial and boundary conditions, rendering the solution time-reversible for very long times. This provides a
useful numerical test. We solve the stegoton problem numerically up to time T , then negate the velocity and
continue solving to time 2T . The solution at any time 2T − t0, with t0 ≤ T , should be exactly equal to the
solution at t0. We take T = 600 and t0 = 60. Figure 3.6(a) shows the solution obtained using SharpClaw
on a grid with 24 cells per layer. The t = 1140 solution (squares) is in excellent agreement with the t = 60
solution (solid line). In fact, the maximum point-wise difference has magnitude less than 2 × 10−2. Using
a grid twice as fine, with 48 cells per layer, reduces the point-wise difference to 1 × 10−3. The Clawpack
solution, computed on the same grid (24 cells per layer), is shown in Figure 3.6(b). Again, the SharpClaw
solution is noticeably more accurate. For a more detailed study of this time-reversibility test, we refer to
[16].

3.3. Shallow Water Flow. The next example involves solution of the two-dimensional shallow water
equations

ht + (hu)x + (hv)y = 0 (3.8a)

(hu)t +

(

1

2
hu2 +

1

2
gh2

)

x

+ (huv)y = −ghbx (3.8b)

(hv)t + (huv)x +

(

1

2
hv2 +

1

2
gh2

)

y

= −ghby, (3.8c)

where h, u and v are the depth of the fluid and the velocity components in x and y directions, respectively.
The function b(x, y) is the bottom elevation and the constant g represents gravitational acceleration.
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(a) SharpClaw.
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(b) Clawpack.

Fig. 3.6. Comparison of forward solution (black line) and time-reversed solution (symbols).

Two test cases are presented: a radially symmetric dam-break problem over a flat bottom and a small
perturbation of a steady state over a hump. A Roe solver with entropy fix is used in both cases.

3.3.1. Radial dam-break problem. This problem consists in computing the flow induced by the
instantaneous collapse of an idealized circular dam. It is widely used to benchmark numerical methods
designed to simulate interfacial flows and impact problems.

The domain considered is [−1.25, 1.25]× [−1.25, 1.25]. The initial depth is

h(x, y, t = 0) =

{

2 for
√

x2 + y2 ≤ 1/2

1 for
√

x2 + y2 > 1/2,
(3.9)

and the initial velocity is zero everywhere. This tests the ability of the method to compute the 2D propagation
of nonlinear waves and the extent to which symmetry is preserved in the numerical solution. In the presence
of radial symmetry, system (3.8) can be recast in the following form:

ht + (hU)r = −
hU

r
(3.10a)

(hU)t +

(

1

2
hU2 +

1

2
gh2

)

r

= −
hU2

r
, (3.10b)

where h is still the depth of the fluid, whereas U and r are the radial velocity and the radial position.
An important feature of these equations is the presence of a source term, which physically arises from the
fact that the fluid is spreading out and it is impossible to have constant depth and constant non-zero radial
velocity.

A first comparison between SharpClaw and Clawpack is performed by solving the 1D system (3.10) on
the interval 0 ≤ r ≤ 2.5. A wall boundary condition and non-reflecting boundary condition are imposed at
the left and the right boundaries, respectively. The final time for the analysis is taken to be t = 1. The
classical q-wave Riemann solver based on the Roe linearization is used to solve the Riemann problem at each
interface (see for instance [24] for details), where the left and the right states are computed by using the
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Fig. 3.7. Pointwise absolute error for the water height on a grid with 800 cells. Solid line: SharpClaw solution; dashed
line: Clawpack solution.

characteristic-wise WENO reconstruction. The gravitational acceleration is set to g = 1. A highly resolved
solution obtained with Clawpack on a grids with 25, 600 cells is used as a reference solution.

It is well-known that high order convergence is not observed in the presence of shock waves [26] and
typically the convergence rate is no greater than first order. However, if we plot the difference between the
computed solution available at the cell’s center and the reference solution conservatively averaged on the
same grid, i.e. Ei = |Qi − Q̄i|, then we can visualize where the errors are largest as well as their spatial
structure. Figure 3.7 shows this difference for the water height (h) on a grid with 800 cells. The reference
solution at t = 1 is shown by the solid line in Figure 3.8. The largest errors in both solutions are near the
shocks. In the smooth regions, the SharpClaw solution is more accurate than that of the Clawpack code.

Next we consider the same problem using the full 2D equations (3.8). The SharpClaw and Clawpack
codes are tested on two grids with 125 × 125 and 500 × 500 cells. The final time for the analysis is again
taken to be t = 1.

Figure 3.8 shows the water height h computed with SharpClaw at each cell’s center and t = 1.0 as a
function of the radial position. The radius is measured respect to the center of the initial condition. The
1D reference solution used before is also plotted for comparison. It can be seen that the scheme preserves
a good radial symmetry, though it cannot resolve the shock near the origin. The grid is in fact too coarse.
Clawpack results are not shown in this figure but indicate similar accuracy and similarly good symmetry.

The solutions obtained on the finer grid (500× 500 cells) are shown in Figure 3.9. The effect of the grid
refinement is clearly visible. In fact, the solutions gets close to the reference solution. However, the density
of the grid near the origin is still too coarse to resolve the shock near the origin to high accuracy.

3.3.2. Perturbation of a steady state solution. Conservation laws with source terms often have
steady states in which the flux gradient are non-zero but exactly balanced by source terms. A good numerical
scheme should be able to preserve such steady states and accurately model small perturbations around these
conditions. A classical benchmark test case to investigate these properties is the small perturbation of a 2D
steady state water given by LeVeque [23].

System (3.8) is solved in a rectangular domain [0, 2]× [0, 1], with a bottom topography characterized by
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Fig. 3.8. Solution for the 2D radial dam-break problem on a grid with 125 × 125 cells, plotted as a function of radius.

Fig. 3.9. Solution for the 2D radial dam-break problem on a grid with 500 × 500 cells, plotted as a function of radius.

an ellipsoidal gaussian hump:

b(x, y) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2).

The surface is initially flat with h(x, y, 0) = 1 − b(x, y) except for 0.05 < x < 0.15, where h is perturbed
upward by ǫ = 0.01. The initial discharge in both direction is zero, i.e. hu(x, y, 0) = hv(x, y, 0) = 0. Non-
reflecting (i.e., zero-extrapolation) conditions are imposed at all boundaries. The gravitational acceleration
is set to g = 9.81.

An effort was made to achieve a well-balanced scheme using the f -wave approach combined with
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(a) Component-wise reconstruction.
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(b) f -wave-slope reconstruction.

Fig. 3.10. Contour of the surface level h+ b at time t = 0.12 computed with component-wise reconstruction and f-wave-
slope reconstruction. Contour levels: 0.99942 : 0.000238 : 1.00656.

component-wise or characteristic-wise WENO reconstruction, but this was unsuccessful. This is not sur-
prising, since the algorithm begins by reconstructing a non-constant function. Figure 3.10(a) shows the
contour levels of the solution at t = 0.12 on a fine grid with 600 × 300 cells, obtained with the f -wave
Riemann solver and the component-wise reconstruction approach as a building block for the WENO scheme.
The scheme is not well-balanced and spurious waves are generated around the hump. Similar results are
obtained using characteristic-wise reconstruction.

In order to balance the scheme, the f -wave-slope reconstruction introduced in Section 2.7 is used instead.
In this approach, the WENO reconstruction is applied to waves computed by solving the Riemann problem
at the cell’s interface with the f -wave solver. The bathymetry is approximated by a piecewise-constant
function so that its effect is concentrated at the cell interfaces. When the source term is included in these
Riemann problems, the resulting waves vanish as shown in Figure 3.10(b). In Figure 3.11 the surface level a
cross section along y = 0.5 at time t = 0.06 computed with both reconstruction approaches (and the f -wave
Riemann solver) on a uniform mesh with 600 × 300 is plotted. This comparison illustrates the different
nature of the two approaches. The f -wave-slope reconstruction method keeps the surface flat, whereas
the component-wise reconstruction introduces spurious waves which have an amplitude of the order of the
disturbance that we want to resolve.

Figure 3.12 shows the solution on two uniform meshes with 200×100 cells and 600×300 cells, computed
using the f -wave-slope reconstruction approach. The results clearly indicate that the detailed structure of
the evolution of such a small perturbation is resolved well even with the relatively coarse mesh. These results
agree with those reported in [23].

In order to investigate the accuracy of our scheme for smooth solutions we also have performed a
convergence study at a fixed CFL of 0.3 for the same 2D problem. The smooth initial perturbation is given
by

h(x, y, t = 0) = exp(−50(x− 0.1)2)/100 (3.11)

The results of the convergence study are shown in Table 3.4. A highly resolved numerical simulation computed
with Clawpack on a 40, 000 × 20, 000 grid has been used as a reference solution. Since the bathymetry
b(x, y) is approximated by a piecewise-constant function, both discretizations are formally only second-order
accurate, and the results are roughly consistent with this. Nevertheless, the SharpClaw discretization yields
significantly more accurate results.

21



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006
Surface level at time t = 0.06000000, cross section along y=0.5

Fig. 3.11. Surface level h+ b along a cross section at y = 0.5 and time t = 0.06. Solid line: f-wave Riemann solver and
component-wise reconstruction; dashed line: f-wave Riemann solver and f-wave-slope reconstruction.

Table 3.4
Convergence results for the smooth initial condition (3.11). L2-norm of the error as a function of the grid spacing.

SharpClaw Clawpack
∆x = ∆y Error Order Error Order

1/10 1.14e-2 2.78e-2
1/20 7.00e-3 0.70 2.09e-2 0.41
1/100 8.11e-4 1.34 6.33e-3 0.74
1/200 3.24e-4 1.32 2.40e-3 1.40
1/1000 2.93e-5 1.49 1.43e-4 1.75
1/2000 5.94e-6 2.30 3.81e-5 1.91

4. Conclusions. We have presented a general approach to extending the finite volume wave propaga-
tion algorithm to high order accuracy in one and two dimensions. The algorithm is based on a method-
of-lines approach, wherein the semi-discrete scheme relies on high order reconstruction and computation
of fluctuations, including a total fluctuation term arising inside each cell. By using WENO reconstruction
and strong stability preserving time integration, high order accurate non-oscillatory results are obtained, as
demonstrated through a variety of test problems.

This algorithm has several desirable features. Like the second-order wave propagation algorithms in
Clawpack [22], it is applicable to hyperbolic PDEs including linear nonconservative systems and nonlinear
systems with spatially varying flux function. It has been shown to achieve high order accuracy even for
problems with discontinuous coefficients. Finally, the algorithm can be adapted to give a well-balanced
scheme for balance laws by use of the f -wave approach and a new wave-slope reconstruction technique.

Hyperbolic systems of equations with both smooth and non-smooth solution have been used to test
the properties and the capabilities of the proposed method. The schemes have been compared for linear
acoustics and nonlinear elasticity problems in heterogeneous media and for the shallow water equations
with and without bottom topography. Two types of Riemann solver have been used, i.e the classical (q-)

22



wave algorithm and the f -wave approach. The new scheme performed well for all the test cases. It gives
significantly better accuracy than Clawpack (on the same grid) for smooth problems.

A drawback of our implementation of well-balancing is that it requires the effect of the source term
to be approximated entirely at the cell interfaces. For shallow water equations with smooth bathymetry,
this will reduce the formal accuracy to second order. Future work might explore the implementation of
higher order accurate well-balancing for polynomial source terms using high order quadrature. In any case,
in two dimensions, the presented dimension-by-dimension reconstruction approach is formally only second-
order accurate (see [34]); however, it gives improved accuracy over the second-order scheme implemented in
Clawpack for the test problems considered. Further investigation of different approaches to multidimensional
reconstruction for problems containing both shocks and rich smooth flow structures is a topic of future
research.
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Fig. 3.12. Contour of the surface level h+ b. f-wave-slope reconstruction. 30 uniformly spaced contour lines. t = 0.12

from 0.99942 to 1.00656; t = 0.24 from 0.99318 to 1.01659; t = 0.36 from 0.98814 to 1.01161; t = 0.48 from 0.99023 to 1.00508;
t = 0.6 from 0.995144 to 1.00629. Left: results with a 200 × 100 cells. Right: results with a 600× 300 cells.
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