Transport processes that cause tsunamis and are caused by tsunamis

Robert Weiss

Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.

weiszr@vt.edu

February 12, 2012

Outline

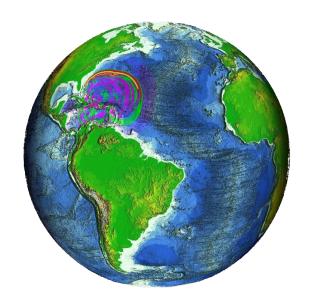
Process that cause tsunamis:

 \sim Submarine landslides

Outline

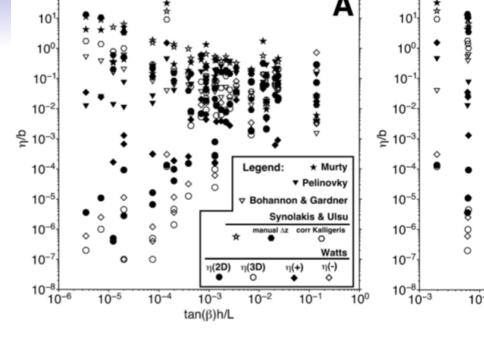
Process that cause tsunamis:

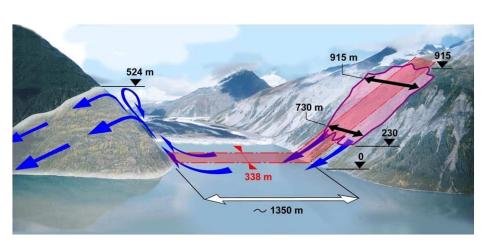
→ Submarine landslides


Process that is caused by tsunamis:

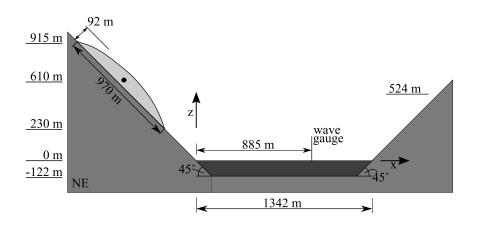
→ Sediment transport

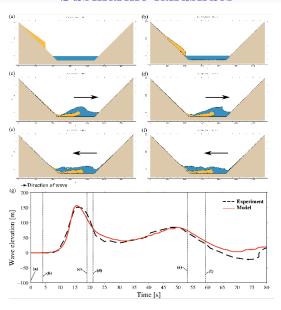
General




General

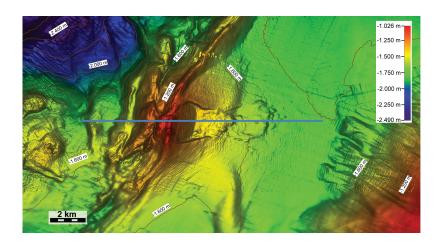
General

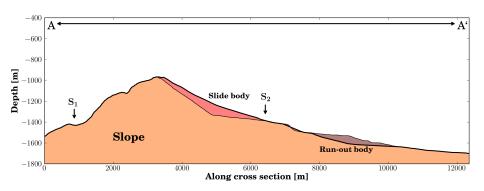

iSALE

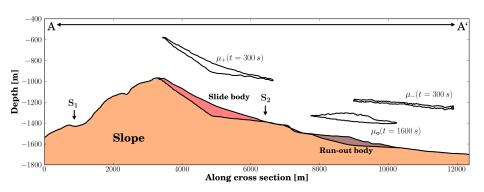

Simplified Arbitrary Lagrangian Eurlerian

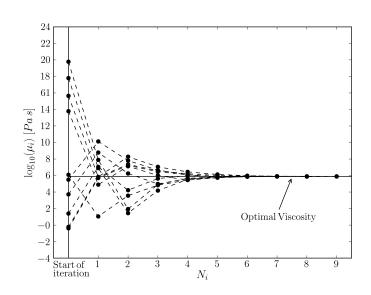
iSALE

Simplified Arbitrary Lagrangian Eurlerian


- Compressible Navier–Stokes equations
- Constitutive and strength models
- Tracking of internal cell interfaces
- Extensively validated for impacts by experiments, other hydrocodes, and field data






Valdes Slide



ϕ scale	Size range [mm]	Aggregate name
-8 <	> 256	Boulder
-6 to -8	64 - 256	Cobble
-5 to -6	32 - 64	Very coarse gravel
-4 to -5	16 - 32	Course gravel
-3 to -4	8 - 16	Medium gravel
-2 to -3	4 - 8	Fine gravel
-1 to -2	2 - 4	Very fine gravel
0 to -1	1 - 2	Very coarse sand
1 to 0	0.5000 - 1	Coarse sand
2 to 1	0.2500 - 0.5000	Medium sand
3 to 2	0.0125 - 0.2500	Fine dand
4 to 3	0.0062 - 0.0125	Very fine sand
> 4	< 0.0062	Silt, Mud

ϕ scale	Size range [mm]	Aggregate name
-8 <	> 256	Boulder
-6 to -8	64 - 256	Cobble
-5 to -6	32 - 64	Very coarse gravel
-4 to -5	16 - 32	Course gravel
-3 to -4	8 - 16	Medium gravel
-2 to -3	4 - 8	Fine gravel
-1 to -2	2 - 4	Very fine gravel
0 to -1	1 - 2	Very coarse sand
1 to 0	0.5000 - 1	Coarse sand
2 to 1	0.2500 - 0.5000	Medium sand
2 to 1 3 to 2	0.2500 - 0.5000 0.0125 - 0.2500	Medium sand Fine dand
	0.=000 0.000	
3 to 2	0.0125 - 0.2500	Fine dand

Tsunami deposits Small Grain Sizes

The Honeymoon equations:

The sediment in this domain is thought to be much smaller than the expected fluid structures, which results in a continuum model for particles in suspension and for the fluid. Theoretically there are N different grain-size classes in the domain. The different classes have a volume fraction of $\chi_s(t,x)$ with $s=1,\ldots,N$. Hence, the volume fraction for the fluid is $\chi_0=1-\sum\chi_k$. Furthermore, parameters with over-lines, such as $\bar{\chi}_i$ are averaged by the Favre method $(\chi'=\chi-\bar{\chi})$. The velocity of each grain-size class is denoted by $u_i^s(t,x)$ where a constant grain density is assumed for simplicity. The velocity of the fluid is denoted with u'(t,x). The velocity of the solid phase is $\bar{u}_i^s=(\bar{\chi}u_i^0)/(\bar{\chi}_0)$ and of the fluid phase, $\bar{u}_i^t=(\bar{\chi}_0u_i^t)/(\bar{\chi}_0)$. The velocity and momentum equations for the fluid and solid phase can be derived. The continuity and momentum equations for the fluid and solid phase can be derived. The continuity equation for the fluid phase is: $\frac{\partial p/\bar{\chi}_0}{2L^2} + \partial_i^b \frac{p/\bar{\chi}_0\bar{u}_i^t}{2L^2} = 0$

The momentum equation for the fluid phase is:

$$\frac{\partial \rho_{f} \overline{\chi_{0}} \widetilde{u}_{i}^{f}}{\partial t} + \frac{\rho_{f} \overline{\chi_{0}} \widetilde{u}_{i}^{f}}{\partial x_{j}^{f}} = -\overline{\chi_{0}} \frac{\partial \overline{\rho_{f}}}{\partial x_{i}} + \frac{\partial T_{ij}^{fT}}{\partial x_{j}} + \rho_{f} \overline{\chi_{0}} g_{i} + \sum_{s} \left(\beta \overline{\chi_{s}} \left(\overline{u}_{i}^{f} - \overline{u}_{i}^{s} \right) + \beta \nu_{T} \frac{\partial \overline{\chi_{s}}}{\partial x_{i}} \right) \tag{2}$$

The momentum equation for the solid phase is:

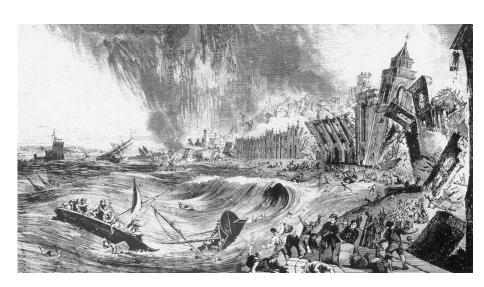
$$\frac{\partial \rho_s \overline{\chi_s} \widetilde{u}_i^s}{\partial t} + \frac{\rho_s \overline{\chi_s} \widetilde{u}_i^s}{\partial x_i} = -\overline{\chi_s} \frac{\partial \overline{P^f}}{\partial x_i} + \rho_s \overline{\chi_s} g_i - \beta \overline{\chi_s} \left(\widetilde{u}_i^f - \widetilde{u}_i^s \right) + \beta \nu_T \frac{\partial \overline{\chi_s}}{\partial x_i}$$
(3)

with T_{ij}^{TT} representing fluid stresses and P^f , the fluid pressure. For the fluid stresses, a respective turbulence-closure model, such as $k-\epsilon$, needs to be applied. Finally, the continuity equation for the solid phase is:

$$\frac{\partial \rho_s \overline{\chi}}{\partial t} + \partial \frac{\rho_s \overline{\chi} \widehat{u}_i^s}{\partial x_i} = 0 \tag{4}$$

With the presented framework, the advection-diffusion equation becomes:

$$\frac{\partial \rho_{s}\overline{\chi_{s}}}{\partial t} + \frac{\partial}{\partial x_{i}}[(\bar{a}_{i} - w_{s}\delta_{j3})\rho_{s}\overline{\chi_{s}}] = \frac{\partial}{\partial x_{i}} \left(\frac{v_{T}}{\sigma_{k}} \frac{\partial \rho_{s}\overline{\chi_{s}}}{\partial x_{i}}\right)$$
(5)





AFP/ Jiji Press





Motivation

