
Forest-of-octrees AMR: algorithms and interfaces

Carsten Burstedde

joint work with

Omar Ghattas, Tobin Isaac, Georg Stadler, Lucas C. Wilcox

Institut für Numerische Simulation (INS)
Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin, USA

Feb 05, 2012

Second [HPC]3 Workshop
KAUST, Saudi Arabia



Key points about AMR
AMR—Adaptive Mesh Refinement

I local refinement

I local coarsening

I dynamic

I parallel

I (element-based)

I (general geometry)



Key points about AMR
AMR—Adaptive Mesh Refinement

I local refinement

I local coarsening

I dynamic

I parallel

I (element-based)

I (general geometry)



Key points about AMR
AMR—Adaptive Mesh Refinement

I local refinement

I local coarsening

I dynamic

I parallel

I (element-based)

I (general geometry)



Why (not) use AMR?
AMR—Adaptive Mesh Refinement

Benefits (problem-dependent)

I Reduction in problem size

I Reduction in run time

I Gain in accuracy per degree of freedom

I Gain in modeling flexibility

Challenges (fundamental)

I Storage: Irregular mesh structure

I Computational: Tree traversals and searches

I Networking: Irregular communication patterns

I Numerical: Horizontal/vertical projections



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

Artist rendering
Image by US Geological Survey

Simul. (w. M. Gurnis, L. Alisic, CalTech)
Surface viscosity (colors), velocity (arrows)



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

Zoom into the boundary between the Australia/New Hebrides plates



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

Zoom into the boundary between the Australia/New Hebrides plates



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Ice sheet dynamics: Complex geometry and boundaries

Antarctica meshes (w. C. Jackson, UTIG)
Adapt to geometry from SeaRISE data



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Seismic wave propagation: Adapt to local wave length

Varying local wave speeds Adapt to local wave length



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Block-structured (patch-based) AMR

www.cactuscode.org



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Conforming tetrahedral (unstructured) AMR

mesh data courtesy David Lazzara, MIT



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

I Octree maps to cube-like geometry

I 1:1 relation between octree leaves and mesh elements



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

Proc 0 Proc 1 Proc 2

I Space-filling curve (SFC): Fast parallel partitioning

I Fast parallel tree algorithms for sorting and searching



Octree-based AMR

Efficient encoding and total ordering

00

01

10

11

00 01 10 11

01

11

Proc 0 Proc 1 Proc 2

I 1:1 relation between leaves and elements → efficient encoding
I path from root to node 10 01 11

I derive element x-coordinate 0 1 1 → x = 3
I derive element y-coordinate 1 0 1 → y = 5



Octree-based AMR

Efficient encoding and total ordering

00

01

10

11

00 01 10 11

01

11

Proc 0 Proc 1 Proc 2

I 1:1 relation between leaves and elements → efficient encoding
I path from root to node, append level 10 01 11 11 → key

I derive element x-coordinate 0 1 1 → x = 3
I derive element y-coordinate 1 0 1 → y = 5



Octree-based AMR

Efficient encoding and total ordering

00

01

10

11

00 01 10 11

01

11

Proc 0 Proc 1 Proc 2

I 1:1 relation between leaves and elements → efficient encoding
I path from root to node, append level 10 01 11 11 → key
I derive element x-coordinate 0 1 1 → x = 3

I derive element y-coordinate 1 0 1 → y = 5



Octree-based AMR

Efficient encoding and total ordering

00

01

10

11

00 01 10 11

01

11

Proc 0 Proc 1 Proc 2

I 1:1 relation between leaves and elements → efficient encoding
I path from root to node, append level 10 01 11 11 → key
I derive element x-coordinate 0 1 1 → x = 3
I derive element y-coordinate 1 0 1 → y = 5



Octree-based AMR

Fast elementary operations

00

01

10

11

00 01 10 11

01

11

Proc 0 Proc 1 Proc 2

I Construct parent or children → vertical tree step O(1)
I path from root to node, append level 10 01 11 11 → key



Octree-based AMR

Fast elementary operations

00

01

10

11

00 01 10 11

01

Proc 0 Proc 1 Proc 2

III Construct parent or children → vertical tree step O(1)
I path from root to node, append level 10 01 11 11
I zero level coordinates, decrease level 10 01 00 10 → key



Octree-based AMR

Fast elementary operations

00

01

10

11

00 01 10 11

01

Proc 0 Proc 1 Proc 2

II Construct neighbors → horizontal tree step/jump O(1)
I path from root to node, append level 10 01 00 10 → key



Octree-based AMR

Fast elementary operations

00

01

10

11

00 01 10 11

00

Proc 0 Proc 1 Proc 2

III Construct neighbors → horizontal tree step/jump O(1)
I path from root to node, append level 10 01 00 10
I Substract x-coordinate increment 10 00 00 10 → key
I Search on-processor element → tree search O(log N

P )



Octree-based AMR

Fast elementary operations

00

01

10

11

00 01 10 11

01

Proc 0 Proc 1 Proc 2

I Construct neighbors → horizontal tree step/jump O(1)
I path from root to node, append level 10 01 00 10 → key



Octree-based AMR

Fast elementary operations

00

01

10

11

00 01 10 11

00

Proc 0 Proc 1 Proc 2

III Construct neighbors → horizontal tree step/jump O(1)
I path from root to node, append level 10 01 00 10
I Add x-coordinate increment 11 00 00 10 → key
I Search off-processor element-owner → search SFC O(logP )



Synthesis: Forest of octrees

From tree...

=

I Limitation: Cube-like geometric shapes

I Challenge: Non-matching coordinate systems between octrees



Synthesis: Forest of octrees

...to forest

=

I Advantage: Geometric flexibility

I Challenge: Non-matching coordinate systems between octrees



“p4est”—forest-of-octrees algorithms

Connect SFC through all octrees [1]

k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Minimal global shared storage (metadata)

I Shared list of octant counts per core (N)p 4× P bytes
I Shared list of partition markers (k;x, y, z)p 16× P bytes
I 2D example above (h = 8): markers (0; 0, 0), (0; 6, 4), (1; 0, 4)

[1] C. Burstedde, L. C. Wilcox, O. Ghattas (SISC, 2011)



“p4est”—forest-of-octrees algorithms

p4est is a pure AMR module

I Rationale: Support diverse numerical approaches

I Internal state: Element ordering and parallel partition

I Provide minimal API for mesh modification

Connect to numerical discretizations / solvers (“App”)

I p4est API calls are like MPI collectives (atomic to App)

I p4est API hides parallel algorithms and communication

I App → p4est: API invokes per-element callbacks

I App ← p4est: Access internal state read-only



“p4est”—forest-of-octrees algorithms

p4est core API (for “write access”)

I p4est new: Create a uniformly refined, partitioned forest

I p4est refine: Refine per-element acc. to 0/1 callbacks

I p4est coarsen: Coarsen 2d elements acc. to 0/1 callbacks

I p4est balance: Establish 2:1 neighbor sizes by add. refines

I p4est partition: Parallel redistribution acc. to weights

I p4est ghost: Gather one layer of off-processor elements

p4est “random read access” not formalized

I Loop through p4est data structures as needed



“p4est”—forest-of-octrees algorithms
Weak scalability on ORNL’s “Jaguar” supercomputer

0

10

20

30

40

50

60

70

80

90

100

12 60 432 3444 27540 220320

P
er

ce
n
ta

g
e

o
f
ru

n
ti
m

e

Number of CPU cores

Partition Balance Ghost Nodes

I Cost of New, Refine, Coarsen, Partition negligible
I 5.13× 1011 octants; < 10 seconds per million octants per core



“p4est”—forest-of-octrees algorithms
Weak scalability on ORNL’s “Jaguar” supercomputer

0

2

4

6

8

10

12 60 432 3444 27540 220320

S
ec

o
n
d
s

p
er

(m
ill

io
n

el
em

en
ts

/
co

re
)

Number of CPU cores

Balance Nodes

I Dominant operations: Balance and Nodes scale over 18,360x
I 5.13× 1011 octants; < 10 seconds per million octants per core



“p4est”—forest-of-octrees algorithms

What is a p4est element? Anything!

I The App defines how it will interprete an element

Examples

I Continuous bi-/trilinear elements

I High-order continuous spectral elements

I High-order DG elements with Gauss quadrature, LGL, . . .

I An ijk subgrid optimized for GPU computation

I An Md patch from PyClaw

I . . .



App: Dynamic-mesh DG (3D advection)
Weak scalability on ORNL’s “Jaguar” supercomputer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

12 30 60 120 252 504 1020 2040 4080 8160 16K 32K 65K 130K 220K

P
ar

al
le

l e
ffi

ci
en

cy

Number of CPU cores

Normalized work per core per total run time

I 3,200 high-order elements per core from 12 to 220,320 cores
I Overall parallel efficiency is 70% over a 18,360x scale



Concepts related to patch-AMR



Concepts related to patch-AMR



Concepts related to patch-AMR

Differences

I SFC logical structure vs. unrestricted patch location

I Non-overlapping FE/DG allows arbitrary polynomial order

I Non-overlapping elements favor parallel efficiency

I Overlapping elements favor sharp CFL time step size

Best of both worlds?

I One leaf ≡ One PyClaw patch: Reuse efficient math code

I Allow overlap ≡ Allow data at non-leaf octree nodes

I No overlap: “Standard” FV or DG method

I Is local time stepping a requirement?

I Should we use implicit time stepping?



Acknowledgements

Publications

I Homepage: http://burstedde.ins.uni-bonn.de/

Funding

I NSF DMS, OCI PetaApps, OPP CDI

I DOE SciDAC TOPS, SC

I AFOSR

HPC Resources

I Texas Advanced Computing Center (TACC)

I National Center for Computational Science (NCCS)


