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Why (not) use AMR?
AMR—Adaptive Mesh Refinement

Benefits (problem-dependent)

I Reduction in problem size

I Reduction in run time

I Gain in accuracy per degree of freedom

I Gain in modeling flexibility

Challenges (fundamental)

I Storage: Irregular mesh structure

I Computational: Tree traversals and searches

I Networking: Irregular communication patterns

I Numerical: Horizontal/vertical projections



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

Artist rendering
Image by US Geological Survey

Simul. (w. M. Gurnis, L. Alisic, CalTech)
Surface viscosity (colors), velocity (arrows)
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Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Ice sheet dynamics: Complex geometry and boundaries

Antarctica meshes (w. C. Jackson, UTIG)
Adapt to geometry from SeaRISE data



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Seismic wave propagation: Adapt to local wave length

Varying local wave speeds Adapt to local wave length



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Block-structured (patch-based) AMR

www.cactuscode.org



AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Conforming tetrahedral (unstructured) AMR

mesh data courtesy David Lazzara, MIT
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AMR
AMR—Adaptive Mesh Refinement

Types of AMR

I Octree-based AMR

Proc 0 Proc 1 Proc 2

I Space-filling curve (SFC): Fast parallel partitioning

I Fast parallel tree algorithms for sorting and searching



Octree-based AMR

Efficient encoding and total ordering
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Octree-based AMR

Fast elementary operations

00
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00 01 10 11

00

Proc 0 Proc 1 Proc 2

III Construct neighbors → horizontal tree step/jump O(1)
I path from root to node, append level 10 01 00 10
I Add x-coordinate increment 11 00 00 10 → key
I Search off-processor element-owner → search SFC O(logP )



Synthesis: Forest of octrees

From tree...

=

I Limitation: Cube-like geometric shapes

I Challenge: Non-matching coordinate systems between octrees



Synthesis: Forest of octrees

...to forest

=

I Advantage: Geometric flexibility

I Challenge: Non-matching coordinate systems between octrees



“p4est”—forest-of-octrees algorithms

Connect SFC through all octrees [1]

k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Minimal global shared storage (metadata)

I Shared list of octant counts per core (N)p 4× P bytes
I Shared list of partition markers (k;x, y, z)p 16× P bytes
I 2D example above (h = 8): markers (0; 0, 0), (0; 6, 4), (1; 0, 4)

[1] C. Burstedde, L. C. Wilcox, O. Ghattas (SISC, 2011)



“p4est”—forest-of-octrees algorithms

p4est is a pure AMR module

I Rationale: Support diverse numerical approaches

I Internal state: Element ordering and parallel partition

I Provide minimal API for mesh modification

Connect to numerical discretizations / solvers (“App”)

I p4est API calls are like MPI collectives (atomic to App)

I p4est API hides parallel algorithms and communication

I App → p4est: API invokes per-element callbacks

I App ← p4est: Access internal state read-only



“p4est”—forest-of-octrees algorithms

p4est core API (for “write access”)

I p4est new: Create a uniformly refined, partitioned forest

I p4est refine: Refine per-element acc. to 0/1 callbacks

I p4est coarsen: Coarsen 2d elements acc. to 0/1 callbacks

I p4est balance: Establish 2:1 neighbor sizes by add. refines

I p4est partition: Parallel redistribution acc. to weights

I p4est ghost: Gather one layer of off-processor elements

p4est “random read access” not formalized

I Loop through p4est data structures as needed



“p4est”—forest-of-octrees algorithms
Weak scalability on ORNL’s “Jaguar” supercomputer
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I Cost of New, Refine, Coarsen, Partition negligible
I 5.13× 1011 octants; < 10 seconds per million octants per core



“p4est”—forest-of-octrees algorithms
Weak scalability on ORNL’s “Jaguar” supercomputer
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I Dominant operations: Balance and Nodes scale over 18,360x
I 5.13× 1011 octants; < 10 seconds per million octants per core



“p4est”—forest-of-octrees algorithms

What is a p4est element? Anything!

I The App defines how it will interprete an element

Examples

I Continuous bi-/trilinear elements

I High-order continuous spectral elements

I High-order DG elements with Gauss quadrature, LGL, . . .

I An ijk subgrid optimized for GPU computation

I An Md patch from PyClaw

I . . .



App: Dynamic-mesh DG (3D advection)
Weak scalability on ORNL’s “Jaguar” supercomputer
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I 3,200 high-order elements per core from 12 to 220,320 cores
I Overall parallel efficiency is 70% over a 18,360x scale



Concepts related to patch-AMR
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Concepts related to patch-AMR

Differences

I SFC logical structure vs. unrestricted patch location

I Non-overlapping FE/DG allows arbitrary polynomial order

I Non-overlapping elements favor parallel efficiency

I Overlapping elements favor sharp CFL time step size

Best of both worlds?

I One leaf ≡ One PyClaw patch: Reuse efficient math code

I Allow overlap ≡ Allow data at non-leaf octree nodes

I No overlap: “Standard” FV or DG method

I Is local time stepping a requirement?

I Should we use implicit time stepping?
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