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Why (not) use AMR?

AMR—Adaptive Mesh Refinement

Benefits (problem-dependent)
» Reduction in problem size
» Reduction in run time
» Gain in accuracy per degree of freedom

» Gain in modeling flexibility

Challenges (fundamental)
» Storage: Irregular mesh structure
» Computational: Tree traversals and searches
» Networking: Irregular communication patterns

» Numerical: Horizontal/vertical projections



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

Artist rendering Simul. (w. M. Gurnis, L. Alisic, CalTech)
Image by US Geological Survey Surface viscosity (colors), velocity (arrows)
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Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Ice sheet dynamics: Complex geometry and boundaries

Antarctica meshes (w. C. Jackson, UTIG)
Adapt to geometry from SeaRISE data



Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Seismic wave propagation: Adapt to local wave length

Varying local wave speeds Adapt to local wave length



Types of AMR

» Block-structured (patch-based) AMR

AMR

AMR—Adaptive Mesh Refinement

WWW.cactuscode.org



AMR

AMR—Adaptive Mesh Refinement
Types of AMR
» Conforming tetrahedral (unstructured) AMR

mesh data courtesy David Lazzara, MIT
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Types of AMR
» Octree-based AMR
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» 1:1 relation between octree leaves and mesh elements
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AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

» Space-filling curve (SFC): Fast parallel partitioning

> Fast parallel tree algorithms for sorting and searching



Octree-based AMR

Efficient encoding and total ordering

> 1:1 relation between leaves and elements — efficient encoding
» path from root to node 10 01 11
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Octree-based AMR

Efficient encoding and total ordering

> 1:1 relation between leaves and elements — efficient encoding
> path from root to node, append level 10 01 11 11 — key
» derive element z-coordinate 01 1—5x2=3
> derive element y-coordinate 1 0 1 —»y=5



Octree-based AMR

Fast elementary operations

» Construct parent or children — vertical tree step O(1)
> path from root to node, append level 10 01 11 11 — key



Octree-based AMR

Fast elementary operations
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» Construct parent or children — vertical tree step O(1)
» path from root to node, append level 10 01 11 11
> zero level coordinates, decrease level 10 01 00 10 — key
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» Construct neighbors — horizontal tree step/jump O(1)
» path from root to node, append level 10 01 00 10 — key



Octree-based AMR

Fast elementary operations
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» Construct neighbors — horizontal tree step/jump O(1)

path from root to node, append level 10 01 00 10
Substract x-coordinate increment 10 00 00 10 — key
Search on-processor element — tree search O(log %)

vVvyy



Octree-based AMR

Fast elementary operations
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» Construct neighbors — horizontal tree step/jump O(1)
» path from root to node, append level 10 01 00 10 — key



Octree-based AMR

Fast elementary operations
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Construct neighbors — horizontal tree step/jump O(1)

path from root to node, append level 10 01 00 10

Add z-coordinate increment 11 00 00 10 — key
Search off-processor element-owner — search SFC O(log P)
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Synthesis: Forest of octrees

From tree...

» Limitation: Cube-like geometric shapes



Synthesis: Forest of octrees

...to forest

» Advantage: Geometric flexibility

» Challenge: Non-matching coordinate systems between octrees



“p4est” —forest-of-octrees algorithms

Connect SFC through all octrees [y
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Minimal global shared storage (metadata)
» Shared list of octant counts per core (N), 4 x P bytes
» Shared list of partition markers (k;z, v, 2), 16 x P bytes

» 2D example above (h = 8): markers (0;0,0), (0;6,4), (1;0,4)
[1] C. Burstedde, L. C. Wilcox, O. Ghattas (SISC, 2011)



“pdest” —forest-of-octrees algorithms

p4est is a pure AMR module
» Rationale: Support diverse numerical approaches
> Internal state: Element ordering and parallel partition

» Provide minimal API for mesh modification

Connect to numerical discretizations / solvers (“App")

» pdest API calls are like MPI collectives (atomic to App)

v

p4est API hides parallel algorithms and communication

v

App — p4est: API invokes per-element callbacks

v

App < pdest: Access internal state read-only



“pdest” —forest-of-octrees algorithms

pdest core API (for “write access”)

> p4est_new: Create a uniformly refined, partitioned forest

v

p4est_refine: Refine per-element acc. to 0/1 callbacks
» pdest_coarsen: Coarsen 27 elements acc. to 0/1 callbacks

> pdest_balance: Establish 2:1 neighbor sizes by add. refines

v

pdest_partition: Parallel redistribution acc. to weights

v

pdest_ghost: Gather one layer of off-processor elements

p4est “random read access” not formalized

> Loop through p4est data structures as needed



“pdest” —forest-of-octrees algorithms
Weak scalability on ORNL's “Jaguar” supercomputer
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» Cost of New, Refine, Coarsen, Partition negligible
» 5.13 x 10! octants; < 10 seconds per million octants per core



“pdest” —forest-of-octrees algorithms
Weak scalability on ORNL's “Jaguar” supercomputer
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Number of CPU cores
» Dominant operations: Balance and Nodes scale over 18,360x

» 5.13 x 10! octants; < 10 seconds per million octants per core



“pdest” —forest-of-octrees algorithms

What is a p4est element? Anything!

» The App defines how it will interprete an element

Examples

» Continuous bi-/trilinear elements

v

High-order continuous spectral elements

v

High-order DG elements with Gauss quadrature, LGL, ...

v

An ijk subgrid optimized for GPU computation
An M? patch from PyClaw

v



App: Dynamic-mesh DG (3D advection)
Weak scalability on ORNL's “Jaguar” supercomputer

Normalized work per core per total run time
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> 3,200 high-order elements per core from 12 to 220,320 cores
» Overall parallel efficiency is 70% over a 18,360x scale



Concepts related to patch-AMR
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Concepts related to patch-AMR

Differences
» SFC logical structure vs. unrestricted patch location
» Non-overlapping FE/DG allows arbitrary polynomial order
» Non-overlapping elements favor parallel efficiency

» Overlapping elements favor sharp CFL time step size

Best of both worlds?
» One leaf = One PyClaw patch: Reuse efficient math code

v

Allow overlap = Allow data at non-leaf octree nodes
No overlap: “Standard” FV or DG method

Is local time stepping a requirement?

v

v

v

Should we use implicit time stepping?
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