Forest-of-octrees AMR: algorithms and interfaces

Carsten Burstedde
joint work with

Omar Ghattas, Tobin Isaac, Georg Stadler, Lucas C. Wilcox

Institut fiir Numerische Simulation (INS)
Rheinische Friedrich-Wilhelms-Universitdt Bonn, Germany

Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin, USA

Feb 05, 2012

Second [HPC]? Workshop
KAUST, Saudi Arabia

Key points about AMR
AMR—Adaptive Mesh Refinement

local refinement

v

v

local coarsening

» dynamic

v

parallel

v

(element-based)

v

(general geometry)

Key points about AMR
AMR—Adaptive Mesh Refinement

local refinement

v

v

local coarsening

» dynamic

v

parallel

v

(element-based)

v

(general geometry)

Key points about AMR
AMR—Adaptive Mesh Refinement

local refinement

v

v

local coarsening

» dynamic

v

parallel

v

(element-based)

v

(general geometry)

Why (not) use AMR?

AMR—Adaptive Mesh Refinement

Benefits (problem-dependent)
» Reduction in problem size
» Reduction in run time
» Gain in accuracy per degree of freedom

» Gain in modeling flexibility

Challenges (fundamental)
» Storage: Irregular mesh structure
» Computational: Tree traversals and searches
» Networking: Irregular communication patterns

» Numerical: Horizontal/vertical projections

Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

Artist rendering Simul. (w. M. Gurnis, L. Alisic, CalTech)
Image by US Geological Survey Surface viscosity (colors), velocity (arrows)

Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

S OOy "
S SRR = S3

T

Zoom into the boundary between the Australia/New Hebrides plates

Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Mantle convection: High resolution for faults and plate boundaries

Zoom into the boundary between the Australia/New Hebrides plates

Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Ice sheet dynamics: Complex geometry and boundaries

Antarctica meshes (w. C. Jackson, UTIG)
Adapt to geometry from SeaRISE data

Geoscience simulations enabled by AMR
AMR—Adaptive Mesh Refinement

Seismic wave propagation: Adapt to local wave length

Varying local wave speeds Adapt to local wave length

Types of AMR

» Block-structured (patch-based) AMR

AMR

AMR—Adaptive Mesh Refinement

WWW.cactuscode.org

AMR

AMR—Adaptive Mesh Refinement
Types of AMR
» Conforming tetrahedral (unstructured) AMR

mesh data courtesy David Lazzara, MIT

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

7 N
A A

/N

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

7 N
AT A A

/N

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

7 N
NN

7N

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

7 N
AT AN

7N

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

e
N/ NN

7N

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

e
N AN AN

/N

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

e
N NN

2\

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

e
N NN

N\

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

e
N NN

N

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

e
N NN
A

» Octree maps to cube-like geometry

» 1:1 relation between octree leaves and mesh elements

AMR

AMR—Adaptive Mesh Refinement

Types of AMR
» Octree-based AMR

» Space-filling curve (SFC): Fast parallel partitioning

> Fast parallel tree algorithms for sorting and searching

Octree-based AMR

Efficient encoding and total ordering

> 1:1 relation between leaves and elements — efficient encoding
» path from root to node 10 01 11

Octree-based AMR

Efficient encoding and total ordering

> 1:1 relation between leaves and elements — efficient encoding
> path from root to node, append level 10 01 11 11 — key

Octree-based AMR

Efficient encoding and total ordering

> 1:1 relation between leaves and elements — efficient encoding
> path from root to node, append level 10 01 11 11 — key
» derive element z-coordinate 01 1—5x2=3

Octree-based AMR

Efficient encoding and total ordering

> 1:1 relation between leaves and elements — efficient encoding
> path from root to node, append level 10 01 11 11 — key
» derive element z-coordinate 01 1—5x2=3
> derive element y-coordinate 1 0 1 —»y=5

Octree-based AMR

Fast elementary operations

» Construct parent or children — vertical tree step O(1)
> path from root to node, append level 10 01 11 11 — key

Octree-based AMR

Fast elementary operations

/7\10‘:‘ i
VeV Wi

» Construct parent or children — vertical tree step O(1)
» path from root to node, append level 10 01 11 11
> zero level coordinates, decrease level 10 01 00 10 — key

Octree-based AMR

Fast elementary operations

| 00

00/;17 \10|‘. 11
AN AL A

\
1
|
1
|
|
|
|

11

» Construct neighbors — horizontal tree step/jump O(1)
» path from root to node, append level 10 01 00 10 — key

Octree-based AMR

Fast elementary operations

o 5 N
A Nl AN

» Construct neighbors — horizontal tree step/jump O(1)

path from root to node, append level 10 01 00 10
Substract x-coordinate increment 10 00 00 10 — key
Search on-processor element — tree search O(log %)

vVvyy

Octree-based AMR

Fast elementary operations

| 00

00/;17 \10|‘. 11
AN AL A

\
1
|
1
|
|
|
|

11

» Construct neighbors — horizontal tree step/jump O(1)
» path from root to node, append level 10 01 00 10 — key

Octree-based AMR

Fast elementary operations

00%7 \10 11
A7 N wl

\
1
|
1
|
|
|
|

00

01

10

11
Construct neighbors — horizontal tree step/jump O(1)

path from root to node, append level 10 01 00 10

Add z-coordinate increment 11 00 00 10 — key
Search off-processor element-owner — search SFC O(log P)

vvyVvVyy

Synthesis: Forest of octrees

From tree...

» Limitation: Cube-like geometric shapes

Synthesis: Forest of octrees

...to forest

» Advantage: Geometric flexibility

» Challenge: Non-matching coordinate systems between octrees

“p4est” —forest-of-octrees algorithms

Connect SFC through all octrees [y

\

N

'\
T~

=)
— y x
e 1
AL
Y1
Minimal global shared storage (metadata)
» Shared list of octant counts per core (N), 4 x P bytes
» Shared list of partition markers (k;z, v, 2), 16 x P bytes

» 2D example above (h = 8): markers (0;0,0), (0;6,4), (1;0,4)
[1] C. Burstedde, L. C. Wilcox, O. Ghattas (SISC, 2011)

“pdest” —forest-of-octrees algorithms

p4est is a pure AMR module
» Rationale: Support diverse numerical approaches
> Internal state: Element ordering and parallel partition

» Provide minimal API for mesh modification

Connect to numerical discretizations / solvers (“App")

» pdest API calls are like MPI collectives (atomic to App)

v

p4est API hides parallel algorithms and communication

v

App — p4est: API invokes per-element callbacks

v

App < pdest: Access internal state read-only

“pdest” —forest-of-octrees algorithms

pdest core API (for “write access”)

> p4est_new: Create a uniformly refined, partitioned forest

v

p4est_refine: Refine per-element acc. to 0/1 callbacks
» pdest_coarsen: Coarsen 27 elements acc. to 0/1 callbacks

> pdest_balance: Establish 2:1 neighbor sizes by add. refines

v

pdest_partition: Parallel redistribution acc. to weights

v

pdest_ghost: Gather one layer of off-processor elements

p4est “random read access” not formalized

> Loop through p4est data structures as needed

“pdest” —forest-of-octrees algorithms
Weak scalability on ORNL's “Jaguar” supercomputer

Partition HEEE Balance [T Ghost [Nodes
100
90
80
70
60
50

40

Percentage of runtime

30

20

10

0

12 60 432 3444 27540 220320

Number of CPU cores
» Cost of New, Refine, Coarsen, Partition negligible
» 5.13 x 10! octants; < 10 seconds per million octants per core

“pdest” —forest-of-octrees algorithms
Weak scalability on ORNL's “Jaguar” supercomputer

Balance [Nodes N

10

| |
| |
1 1
| |
| |
1 1
,,,,,,,,, AL __
|

Seconds per (million elements / core)

12 60 432 3444 27540 220320

Number of CPU cores
» Dominant operations: Balance and Nodes scale over 18,360x

» 5.13 x 10! octants; < 10 seconds per million octants per core

“pdest” —forest-of-octrees algorithms

What is a p4est element? Anything!

» The App defines how it will interprete an element

Examples

» Continuous bi-/trilinear elements

v

High-order continuous spectral elements

v

High-order DG elements with Gauss quadrature, LGL, ...

v

An ijk subgrid optimized for GPU computation
An M? patch from PyClaw

v

App: Dynamic-mesh DG (3D advection)
Weak scalability on ORNL's “Jaguar” supercomputer

Normalized work per core per total run time

0.9 -

0.8 -

0.7 |-

0.6 [

05 -

Parallel efficiency

0.3 [

0.2 -

0.1 -

12 30 60 120 252 504 1020 2040 4080 8160 16K 32K 65K 130K 220K
Number of CPU cores

> 3,200 high-order elements per core from 12 to 220,320 cores
» Overall parallel efficiency is 70% over a 18,360x scale

Concepts related to patch-AMR

Concepts related to patch-AMR

Concepts related to patch-AMR

Differences
» SFC logical structure vs. unrestricted patch location
» Non-overlapping FE/DG allows arbitrary polynomial order
» Non-overlapping elements favor parallel efficiency

» Overlapping elements favor sharp CFL time step size

Best of both worlds?
» One leaf = One PyClaw patch: Reuse efficient math code

v

Allow overlap = Allow data at non-leaf octree nodes
No overlap: “Standard” FV or DG method

Is local time stepping a requirement?

v

v

v

Should we use implicit time stepping?

Acknowledgements

Publications

» Homepage: http://burstedde.ins.uni-bonn.de/

Funding
» NSF DMS, OCI PetaApps, OPP CDI
» DOE SciDAC TOPS, SC
» AFOSR

HPC Resources
» Texas Advanced Computing Center (TACC)
> National Center for Computational Science (NCCS)

